Gitee AI
README.md87.96 kB
一键复制
元数据

tags:
- mteb
model-index:
- name: bge-base-en
  results:
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_counterfactual
      name: MTEB AmazonCounterfactualClassification (en)
      config: en
      split: test
      revision: e8379541af4e31359cca9fbcf4b00f2671dba205
    metrics:
    - type: accuracy
      value: 75.73134328358209
    - type: ap
      value: 38.97277232632892
    - type: f1
      value: 69.81740361139785
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_polarity
      name: MTEB AmazonPolarityClassification
      config: default
      split: test
      revision: e2d317d38cd51312af73b3d32a06d1a08b442046
    metrics:
    - type: accuracy
      value: 92.56522500000001
    - type: ap
      value: 88.88821771869553
    - type: f1
      value: 92.54817512659696
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_reviews_multi
      name: MTEB AmazonReviewsClassification (en)
      config: en
      split: test
      revision: 1399c76144fd37290681b995c656ef9b2e06e26d
    metrics:
    - type: accuracy
      value: 46.91
    - type: f1
      value: 46.28536394320311
  - task:
      type: Retrieval
    dataset:
      type: arguana
      name: MTEB ArguAna
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 38.834
    - type: map_at_10
      value: 53.564
    - type: map_at_100
      value: 54.230000000000004
    - type: map_at_1000
      value: 54.235
    - type: map_at_3
      value: 49.49
    - type: map_at_5
      value: 51.784
    - type: mrr_at_1
      value: 39.26
    - type: mrr_at_10
      value: 53.744
    - type: mrr_at_100
      value: 54.410000000000004
    - type: mrr_at_1000
      value: 54.415
    - type: mrr_at_3
      value: 49.656
    - type: mrr_at_5
      value: 52.018
    - type: ndcg_at_1
      value: 38.834
    - type: ndcg_at_10
      value: 61.487
    - type: ndcg_at_100
      value: 64.303
    - type: ndcg_at_1000
      value: 64.408
    - type: ndcg_at_3
      value: 53.116
    - type: ndcg_at_5
      value: 57.248
    - type: precision_at_1
      value: 38.834
    - type: precision_at_10
      value: 8.663
    - type: precision_at_100
      value: 0.989
    - type: precision_at_1000
      value: 0.1
    - type: precision_at_3
      value: 21.218999999999998
    - type: precision_at_5
      value: 14.737
    - type: recall_at_1
      value: 38.834
    - type: recall_at_10
      value: 86.629
    - type: recall_at_100
      value: 98.86200000000001
    - type: recall_at_1000
      value: 99.644
    - type: recall_at_3
      value: 63.656
    - type: recall_at_5
      value: 73.68400000000001
  - task:
      type: Clustering
    dataset:
      type: mteb/arxiv-clustering-p2p
      name: MTEB ArxivClusteringP2P
      config: default
      split: test
      revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
    metrics:
    - type: v_measure
      value: 48.88475477433035
  - task:
      type: Clustering
    dataset:
      type: mteb/arxiv-clustering-s2s
      name: MTEB ArxivClusteringS2S
      config: default
      split: test
      revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
    metrics:
    - type: v_measure
      value: 42.85053138403176
  - task:
      type: Reranking
    dataset:
      type: mteb/askubuntudupquestions-reranking
      name: MTEB AskUbuntuDupQuestions
      config: default
      split: test
      revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
    metrics:
    - type: map
      value: 62.23221013208242
    - type: mrr
      value: 74.64857318735436
  - task:
      type: STS
    dataset:
      type: mteb/biosses-sts
      name: MTEB BIOSSES
      config: default
      split: test
      revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
    metrics:
    - type: cos_sim_pearson
      value: 87.4403443247284
    - type: cos_sim_spearman
      value: 85.5326718115169
    - type: euclidean_pearson
      value: 86.0114007449595
    - type: euclidean_spearman
      value: 86.05979225604875
    - type: manhattan_pearson
      value: 86.05423806568598
    - type: manhattan_spearman
      value: 86.02485170086835
  - task:
      type: Classification
    dataset:
      type: mteb/banking77
      name: MTEB Banking77Classification
      config: default
      split: test
      revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
    metrics:
    - type: accuracy
      value: 86.44480519480518
    - type: f1
      value: 86.41301900941988
  - task:
      type: Clustering
    dataset:
      type: mteb/biorxiv-clustering-p2p
      name: MTEB BiorxivClusteringP2P
      config: default
      split: test
      revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
    metrics:
    - type: v_measure
      value: 40.17547250880036
  - task:
      type: Clustering
    dataset:
      type: mteb/biorxiv-clustering-s2s
      name: MTEB BiorxivClusteringS2S
      config: default
      split: test
      revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
    metrics:
    - type: v_measure
      value: 37.74514172687293
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackAndroidRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 32.096000000000004
    - type: map_at_10
      value: 43.345
    - type: map_at_100
      value: 44.73
    - type: map_at_1000
      value: 44.85
    - type: map_at_3
      value: 39.956
    - type: map_at_5
      value: 41.727
    - type: mrr_at_1
      value: 38.769999999999996
    - type: mrr_at_10
      value: 48.742000000000004
    - type: mrr_at_100
      value: 49.474000000000004
    - type: mrr_at_1000
      value: 49.513
    - type: mrr_at_3
      value: 46.161
    - type: mrr_at_5
      value: 47.721000000000004
    - type: ndcg_at_1
      value: 38.769999999999996
    - type: ndcg_at_10
      value: 49.464999999999996
    - type: ndcg_at_100
      value: 54.632000000000005
    - type: ndcg_at_1000
      value: 56.52
    - type: ndcg_at_3
      value: 44.687
    - type: ndcg_at_5
      value: 46.814
    - type: precision_at_1
      value: 38.769999999999996
    - type: precision_at_10
      value: 9.471
    - type: precision_at_100
      value: 1.4909999999999999
    - type: precision_at_1000
      value: 0.194
    - type: precision_at_3
      value: 21.268
    - type: precision_at_5
      value: 15.079
    - type: recall_at_1
      value: 32.096000000000004
    - type: recall_at_10
      value: 60.99099999999999
    - type: recall_at_100
      value: 83.075
    - type: recall_at_1000
      value: 95.178
    - type: recall_at_3
      value: 47.009
    - type: recall_at_5
      value: 53.348
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackEnglishRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 32.588
    - type: map_at_10
      value: 42.251
    - type: map_at_100
      value: 43.478
    - type: map_at_1000
      value: 43.617
    - type: map_at_3
      value: 39.381
    - type: map_at_5
      value: 41.141
    - type: mrr_at_1
      value: 41.21
    - type: mrr_at_10
      value: 48.765
    - type: mrr_at_100
      value: 49.403000000000006
    - type: mrr_at_1000
      value: 49.451
    - type: mrr_at_3
      value: 46.73
    - type: mrr_at_5
      value: 47.965999999999994
    - type: ndcg_at_1
      value: 41.21
    - type: ndcg_at_10
      value: 47.704
    - type: ndcg_at_100
      value: 51.916
    - type: ndcg_at_1000
      value: 54.013999999999996
    - type: ndcg_at_3
      value: 44.007000000000005
    - type: ndcg_at_5
      value: 45.936
    - type: precision_at_1
      value: 41.21
    - type: precision_at_10
      value: 8.885
    - type: precision_at_100
      value: 1.409
    - type: precision_at_1000
      value: 0.189
    - type: precision_at_3
      value: 21.274
    - type: precision_at_5
      value: 15.045
    - type: recall_at_1
      value: 32.588
    - type: recall_at_10
      value: 56.333
    - type: recall_at_100
      value: 74.251
    - type: recall_at_1000
      value: 87.518
    - type: recall_at_3
      value: 44.962
    - type: recall_at_5
      value: 50.609
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackGamingRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 40.308
    - type: map_at_10
      value: 53.12
    - type: map_at_100
      value: 54.123
    - type: map_at_1000
      value: 54.173
    - type: map_at_3
      value: 50.017999999999994
    - type: map_at_5
      value: 51.902
    - type: mrr_at_1
      value: 46.394999999999996
    - type: mrr_at_10
      value: 56.531
    - type: mrr_at_100
      value: 57.19800000000001
    - type: mrr_at_1000
      value: 57.225
    - type: mrr_at_3
      value: 54.368
    - type: mrr_at_5
      value: 55.713
    - type: ndcg_at_1
      value: 46.394999999999996
    - type: ndcg_at_10
      value: 58.811
    - type: ndcg_at_100
      value: 62.834
    - type: ndcg_at_1000
      value: 63.849999999999994
    - type: ndcg_at_3
      value: 53.88699999999999
    - type: ndcg_at_5
      value: 56.477999999999994
    - type: precision_at_1
      value: 46.394999999999996
    - type: precision_at_10
      value: 9.398
    - type: precision_at_100
      value: 1.2309999999999999
    - type: precision_at_1000
      value: 0.136
    - type: precision_at_3
      value: 24.221999999999998
    - type: precision_at_5
      value: 16.539
    - type: recall_at_1
      value: 40.308
    - type: recall_at_10
      value: 72.146
    - type: recall_at_100
      value: 89.60900000000001
    - type: recall_at_1000
      value: 96.733
    - type: recall_at_3
      value: 58.91499999999999
    - type: recall_at_5
      value: 65.34299999999999
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackGisRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 27.383000000000003
    - type: map_at_10
      value: 35.802
    - type: map_at_100
      value: 36.756
    - type: map_at_1000
      value: 36.826
    - type: map_at_3
      value: 32.923
    - type: map_at_5
      value: 34.577999999999996
    - type: mrr_at_1
      value: 29.604999999999997
    - type: mrr_at_10
      value: 37.918
    - type: mrr_at_100
      value: 38.732
    - type: mrr_at_1000
      value: 38.786
    - type: mrr_at_3
      value: 35.198
    - type: mrr_at_5
      value: 36.808
    - type: ndcg_at_1
      value: 29.604999999999997
    - type: ndcg_at_10
      value: 40.836
    - type: ndcg_at_100
      value: 45.622
    - type: ndcg_at_1000
      value: 47.427
    - type: ndcg_at_3
      value: 35.208
    - type: ndcg_at_5
      value: 38.066
    - type: precision_at_1
      value: 29.604999999999997
    - type: precision_at_10
      value: 6.226
    - type: precision_at_100
      value: 0.9079999999999999
    - type: precision_at_1000
      value: 0.11
    - type: precision_at_3
      value: 14.463000000000001
    - type: precision_at_5
      value: 10.35
    - type: recall_at_1
      value: 27.383000000000003
    - type: recall_at_10
      value: 54.434000000000005
    - type: recall_at_100
      value: 76.632
    - type: recall_at_1000
      value: 90.25
    - type: recall_at_3
      value: 39.275
    - type: recall_at_5
      value: 46.225
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackMathematicaRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 17.885
    - type: map_at_10
      value: 25.724000000000004
    - type: map_at_100
      value: 26.992
    - type: map_at_1000
      value: 27.107999999999997
    - type: map_at_3
      value: 23.04
    - type: map_at_5
      value: 24.529
    - type: mrr_at_1
      value: 22.264
    - type: mrr_at_10
      value: 30.548
    - type: mrr_at_100
      value: 31.593
    - type: mrr_at_1000
      value: 31.657999999999998
    - type: mrr_at_3
      value: 27.756999999999998
    - type: mrr_at_5
      value: 29.398999999999997
    - type: ndcg_at_1
      value: 22.264
    - type: ndcg_at_10
      value: 30.902
    - type: ndcg_at_100
      value: 36.918
    - type: ndcg_at_1000
      value: 39.735
    - type: ndcg_at_3
      value: 25.915
    - type: ndcg_at_5
      value: 28.255999999999997
    - type: precision_at_1
      value: 22.264
    - type: precision_at_10
      value: 5.634
    - type: precision_at_100
      value: 0.9939999999999999
    - type: precision_at_1000
      value: 0.13699999999999998
    - type: precision_at_3
      value: 12.396
    - type: precision_at_5
      value: 9.055
    - type: recall_at_1
      value: 17.885
    - type: recall_at_10
      value: 42.237
    - type: recall_at_100
      value: 68.489
    - type: recall_at_1000
      value: 88.721
    - type: recall_at_3
      value: 28.283
    - type: recall_at_5
      value: 34.300000000000004
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackPhysicsRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 29.737000000000002
    - type: map_at_10
      value: 39.757
    - type: map_at_100
      value: 40.992
    - type: map_at_1000
      value: 41.102
    - type: map_at_3
      value: 36.612
    - type: map_at_5
      value: 38.413000000000004
    - type: mrr_at_1
      value: 35.804
    - type: mrr_at_10
      value: 45.178000000000004
    - type: mrr_at_100
      value: 45.975
    - type: mrr_at_1000
      value: 46.021
    - type: mrr_at_3
      value: 42.541000000000004
    - type: mrr_at_5
      value: 44.167
    - type: ndcg_at_1
      value: 35.804
    - type: ndcg_at_10
      value: 45.608
    - type: ndcg_at_100
      value: 50.746
    - type: ndcg_at_1000
      value: 52.839999999999996
    - type: ndcg_at_3
      value: 40.52
    - type: ndcg_at_5
      value: 43.051
    - type: precision_at_1
      value: 35.804
    - type: precision_at_10
      value: 8.104
    - type: precision_at_100
      value: 1.256
    - type: precision_at_1000
      value: 0.161
    - type: precision_at_3
      value: 19.121
    - type: precision_at_5
      value: 13.532
    - type: recall_at_1
      value: 29.737000000000002
    - type: recall_at_10
      value: 57.66
    - type: recall_at_100
      value: 79.121
    - type: recall_at_1000
      value: 93.023
    - type: recall_at_3
      value: 43.13
    - type: recall_at_5
      value: 49.836000000000006
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackProgrammersRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 26.299
    - type: map_at_10
      value: 35.617
    - type: map_at_100
      value: 36.972
    - type: map_at_1000
      value: 37.096000000000004
    - type: map_at_3
      value: 32.653999999999996
    - type: map_at_5
      value: 34.363
    - type: mrr_at_1
      value: 32.877
    - type: mrr_at_10
      value: 41.423
    - type: mrr_at_100
      value: 42.333999999999996
    - type: mrr_at_1000
      value: 42.398
    - type: mrr_at_3
      value: 39.193
    - type: mrr_at_5
      value: 40.426
    - type: ndcg_at_1
      value: 32.877
    - type: ndcg_at_10
      value: 41.271
    - type: ndcg_at_100
      value: 46.843
    - type: ndcg_at_1000
      value: 49.366
    - type: ndcg_at_3
      value: 36.735
    - type: ndcg_at_5
      value: 38.775999999999996
    - type: precision_at_1
      value: 32.877
    - type: precision_at_10
      value: 7.580000000000001
    - type: precision_at_100
      value: 1.192
    - type: precision_at_1000
      value: 0.158
    - type: precision_at_3
      value: 17.541999999999998
    - type: precision_at_5
      value: 12.443
    - type: recall_at_1
      value: 26.299
    - type: recall_at_10
      value: 52.256
    - type: recall_at_100
      value: 75.919
    - type: recall_at_1000
      value: 93.185
    - type: recall_at_3
      value: 39.271
    - type: recall_at_5
      value: 44.901
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 27.05741666666667
    - type: map_at_10
      value: 36.086416666666665
    - type: map_at_100
      value: 37.26916666666667
    - type: map_at_1000
      value: 37.38191666666666
    - type: map_at_3
      value: 33.34225
    - type: map_at_5
      value: 34.86425
    - type: mrr_at_1
      value: 32.06008333333333
    - type: mrr_at_10
      value: 40.36658333333333
    - type: mrr_at_100
      value: 41.206500000000005
    - type: mrr_at_1000
      value: 41.261083333333325
    - type: mrr_at_3
      value: 38.01208333333334
    - type: mrr_at_5
      value: 39.36858333333333
    - type: ndcg_at_1
      value: 32.06008333333333
    - type: ndcg_at_10
      value: 41.3535
    - type: ndcg_at_100
      value: 46.42066666666666
    - type: ndcg_at_1000
      value: 48.655166666666666
    - type: ndcg_at_3
      value: 36.78041666666667
    - type: ndcg_at_5
      value: 38.91783333333334
    - type: precision_at_1
      value: 32.06008333333333
    - type: precision_at_10
      value: 7.169833333333332
    - type: precision_at_100
      value: 1.1395
    - type: precision_at_1000
      value: 0.15158333333333332
    - type: precision_at_3
      value: 16.852
    - type: precision_at_5
      value: 11.8645
    - type: recall_at_1
      value: 27.05741666666667
    - type: recall_at_10
      value: 52.64491666666666
    - type: recall_at_100
      value: 74.99791666666667
    - type: recall_at_1000
      value: 90.50524999999999
    - type: recall_at_3
      value: 39.684000000000005
    - type: recall_at_5
      value: 45.37225
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackStatsRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 25.607999999999997
    - type: map_at_10
      value: 32.28
    - type: map_at_100
      value: 33.261
    - type: map_at_1000
      value: 33.346
    - type: map_at_3
      value: 30.514999999999997
    - type: map_at_5
      value: 31.415
    - type: mrr_at_1
      value: 28.988000000000003
    - type: mrr_at_10
      value: 35.384
    - type: mrr_at_100
      value: 36.24
    - type: mrr_at_1000
      value: 36.299
    - type: mrr_at_3
      value: 33.717000000000006
    - type: mrr_at_5
      value: 34.507
    - type: ndcg_at_1
      value: 28.988000000000003
    - type: ndcg_at_10
      value: 36.248000000000005
    - type: ndcg_at_100
      value: 41.034
    - type: ndcg_at_1000
      value: 43.35
    - type: ndcg_at_3
      value: 32.987
    - type: ndcg_at_5
      value: 34.333999999999996
    - type: precision_at_1
      value: 28.988000000000003
    - type: precision_at_10
      value: 5.506
    - type: precision_at_100
      value: 0.853
    - type: precision_at_1000
      value: 0.11199999999999999
    - type: precision_at_3
      value: 14.11
    - type: precision_at_5
      value: 9.417
    - type: recall_at_1
      value: 25.607999999999997
    - type: recall_at_10
      value: 45.344
    - type: recall_at_100
      value: 67.132
    - type: recall_at_1000
      value: 84.676
    - type: recall_at_3
      value: 36.02
    - type: recall_at_5
      value: 39.613
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackTexRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 18.44
    - type: map_at_10
      value: 25.651000000000003
    - type: map_at_100
      value: 26.735
    - type: map_at_1000
      value: 26.86
    - type: map_at_3
      value: 23.409
    - type: map_at_5
      value: 24.604
    - type: mrr_at_1
      value: 22.195
    - type: mrr_at_10
      value: 29.482000000000003
    - type: mrr_at_100
      value: 30.395
    - type: mrr_at_1000
      value: 30.471999999999998
    - type: mrr_at_3
      value: 27.409
    - type: mrr_at_5
      value: 28.553
    - type: ndcg_at_1
      value: 22.195
    - type: ndcg_at_10
      value: 30.242
    - type: ndcg_at_100
      value: 35.397
    - type: ndcg_at_1000
      value: 38.287
    - type: ndcg_at_3
      value: 26.201
    - type: ndcg_at_5
      value: 28.008
    - type: precision_at_1
      value: 22.195
    - type: precision_at_10
      value: 5.372
    - type: precision_at_100
      value: 0.9259999999999999
    - type: precision_at_1000
      value: 0.135
    - type: precision_at_3
      value: 12.228
    - type: precision_at_5
      value: 8.727
    - type: recall_at_1
      value: 18.44
    - type: recall_at_10
      value: 40.325
    - type: recall_at_100
      value: 63.504000000000005
    - type: recall_at_1000
      value: 83.909
    - type: recall_at_3
      value: 28.925
    - type: recall_at_5
      value: 33.641
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackUnixRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 26.535999999999998
    - type: map_at_10
      value: 35.358000000000004
    - type: map_at_100
      value: 36.498999999999995
    - type: map_at_1000
      value: 36.597
    - type: map_at_3
      value: 32.598
    - type: map_at_5
      value: 34.185
    - type: mrr_at_1
      value: 31.25
    - type: mrr_at_10
      value: 39.593
    - type: mrr_at_100
      value: 40.443
    - type: mrr_at_1000
      value: 40.498
    - type: mrr_at_3
      value: 37.018
    - type: mrr_at_5
      value: 38.492
    - type: ndcg_at_1
      value: 31.25
    - type: ndcg_at_10
      value: 40.71
    - type: ndcg_at_100
      value: 46.079
    - type: ndcg_at_1000
      value: 48.287
    - type: ndcg_at_3
      value: 35.667
    - type: ndcg_at_5
      value: 38.080000000000005
    - type: precision_at_1
      value: 31.25
    - type: precision_at_10
      value: 6.847
    - type: precision_at_100
      value: 1.079
    - type: precision_at_1000
      value: 0.13699999999999998
    - type: precision_at_3
      value: 16.262
    - type: precision_at_5
      value: 11.455
    - type: recall_at_1
      value: 26.535999999999998
    - type: recall_at_10
      value: 52.92099999999999
    - type: recall_at_100
      value: 76.669
    - type: recall_at_1000
      value: 92.096
    - type: recall_at_3
      value: 38.956
    - type: recall_at_5
      value: 45.239000000000004
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackWebmastersRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 24.691
    - type: map_at_10
      value: 33.417
    - type: map_at_100
      value: 35.036
    - type: map_at_1000
      value: 35.251
    - type: map_at_3
      value: 30.646
    - type: map_at_5
      value: 32.177
    - type: mrr_at_1
      value: 30.04
    - type: mrr_at_10
      value: 37.905
    - type: mrr_at_100
      value: 38.929
    - type: mrr_at_1000
      value: 38.983000000000004
    - type: mrr_at_3
      value: 35.276999999999994
    - type: mrr_at_5
      value: 36.897000000000006
    - type: ndcg_at_1
      value: 30.04
    - type: ndcg_at_10
      value: 39.037
    - type: ndcg_at_100
      value: 44.944
    - type: ndcg_at_1000
      value: 47.644
    - type: ndcg_at_3
      value: 34.833999999999996
    - type: ndcg_at_5
      value: 36.83
    - type: precision_at_1
      value: 30.04
    - type: precision_at_10
      value: 7.4510000000000005
    - type: precision_at_100
      value: 1.492
    - type: precision_at_1000
      value: 0.234
    - type: precision_at_3
      value: 16.337
    - type: precision_at_5
      value: 11.897
    - type: recall_at_1
      value: 24.691
    - type: recall_at_10
      value: 49.303999999999995
    - type: recall_at_100
      value: 76.20400000000001
    - type: recall_at_1000
      value: 93.30000000000001
    - type: recall_at_3
      value: 36.594
    - type: recall_at_5
      value: 42.41
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackWordpressRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 23.118
    - type: map_at_10
      value: 30.714999999999996
    - type: map_at_100
      value: 31.656000000000002
    - type: map_at_1000
      value: 31.757
    - type: map_at_3
      value: 28.355000000000004
    - type: map_at_5
      value: 29.337000000000003
    - type: mrr_at_1
      value: 25.323
    - type: mrr_at_10
      value: 32.93
    - type: mrr_at_100
      value: 33.762
    - type: mrr_at_1000
      value: 33.829
    - type: mrr_at_3
      value: 30.775999999999996
    - type: mrr_at_5
      value: 31.774
    - type: ndcg_at_1
      value: 25.323
    - type: ndcg_at_10
      value: 35.408
    - type: ndcg_at_100
      value: 40.083
    - type: ndcg_at_1000
      value: 42.542
    - type: ndcg_at_3
      value: 30.717
    - type: ndcg_at_5
      value: 32.385000000000005
    - type: precision_at_1
      value: 25.323
    - type: precision_at_10
      value: 5.564
    - type: precision_at_100
      value: 0.843
    - type: precision_at_1000
      value: 0.116
    - type: precision_at_3
      value: 13.001
    - type: precision_at_5
      value: 8.834999999999999
    - type: recall_at_1
      value: 23.118
    - type: recall_at_10
      value: 47.788000000000004
    - type: recall_at_100
      value: 69.37
    - type: recall_at_1000
      value: 87.47399999999999
    - type: recall_at_3
      value: 34.868
    - type: recall_at_5
      value: 39.001999999999995
  - task:
      type: Retrieval
    dataset:
      type: climate-fever
      name: MTEB ClimateFEVER
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 14.288
    - type: map_at_10
      value: 23.256
    - type: map_at_100
      value: 25.115
    - type: map_at_1000
      value: 25.319000000000003
    - type: map_at_3
      value: 20.005
    - type: map_at_5
      value: 21.529999999999998
    - type: mrr_at_1
      value: 31.401
    - type: mrr_at_10
      value: 42.251
    - type: mrr_at_100
      value: 43.236999999999995
    - type: mrr_at_1000
      value: 43.272
    - type: mrr_at_3
      value: 39.164
    - type: mrr_at_5
      value: 40.881
    - type: ndcg_at_1
      value: 31.401
    - type: ndcg_at_10
      value: 31.615
    - type: ndcg_at_100
      value: 38.982
    - type: ndcg_at_1000
      value: 42.496
    - type: ndcg_at_3
      value: 26.608999999999998
    - type: ndcg_at_5
      value: 28.048000000000002
    - type: precision_at_1
      value: 31.401
    - type: precision_at_10
      value: 9.536999999999999
    - type: precision_at_100
      value: 1.763
    - type: precision_at_1000
      value: 0.241
    - type: precision_at_3
      value: 19.153000000000002
    - type: precision_at_5
      value: 14.228
    - type: recall_at_1
      value: 14.288
    - type: recall_at_10
      value: 36.717
    - type: recall_at_100
      value: 61.9
    - type: recall_at_1000
      value: 81.676
    - type: recall_at_3
      value: 24.203
    - type: recall_at_5
      value: 28.793999999999997
  - task:
      type: Retrieval
    dataset:
      type: dbpedia-entity
      name: MTEB DBPedia
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 9.019
    - type: map_at_10
      value: 19.963
    - type: map_at_100
      value: 28.834
    - type: map_at_1000
      value: 30.537999999999997
    - type: map_at_3
      value: 14.45
    - type: map_at_5
      value: 16.817999999999998
    - type: mrr_at_1
      value: 65.75
    - type: mrr_at_10
      value: 74.646
    - type: mrr_at_100
      value: 74.946
    - type: mrr_at_1000
      value: 74.95100000000001
    - type: mrr_at_3
      value: 72.625
    - type: mrr_at_5
      value: 74.012
    - type: ndcg_at_1
      value: 54
    - type: ndcg_at_10
      value: 42.014
    - type: ndcg_at_100
      value: 47.527
    - type: ndcg_at_1000
      value: 54.911
    - type: ndcg_at_3
      value: 46.586
    - type: ndcg_at_5
      value: 43.836999999999996
    - type: precision_at_1
      value: 65.75
    - type: precision_at_10
      value: 33.475
    - type: precision_at_100
      value: 11.16
    - type: precision_at_1000
      value: 2.145
    - type: precision_at_3
      value: 50.083
    - type: precision_at_5
      value: 42.55
    - type: recall_at_1
      value: 9.019
    - type: recall_at_10
      value: 25.558999999999997
    - type: recall_at_100
      value: 53.937999999999995
    - type: recall_at_1000
      value: 77.67399999999999
    - type: recall_at_3
      value: 15.456
    - type: recall_at_5
      value: 19.259
  - task:
      type: Classification
    dataset:
      type: mteb/emotion
      name: MTEB EmotionClassification
      config: default
      split: test
      revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
    metrics:
    - type: accuracy
      value: 52.635
    - type: f1
      value: 47.692783881403926
  - task:
      type: Retrieval
    dataset:
      type: fever
      name: MTEB FEVER
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 76.893
    - type: map_at_10
      value: 84.897
    - type: map_at_100
      value: 85.122
    - type: map_at_1000
      value: 85.135
    - type: map_at_3
      value: 83.88
    - type: map_at_5
      value: 84.565
    - type: mrr_at_1
      value: 83.003
    - type: mrr_at_10
      value: 89.506
    - type: mrr_at_100
      value: 89.574
    - type: mrr_at_1000
      value: 89.575
    - type: mrr_at_3
      value: 88.991
    - type: mrr_at_5
      value: 89.349
    - type: ndcg_at_1
      value: 83.003
    - type: ndcg_at_10
      value: 88.351
    - type: ndcg_at_100
      value: 89.128
    - type: ndcg_at_1000
      value: 89.34100000000001
    - type: ndcg_at_3
      value: 86.92
    - type: ndcg_at_5
      value: 87.78200000000001
    - type: precision_at_1
      value: 83.003
    - type: precision_at_10
      value: 10.517999999999999
    - type: precision_at_100
      value: 1.115
    - type: precision_at_1000
      value: 0.11499999999999999
    - type: precision_at_3
      value: 33.062999999999995
    - type: precision_at_5
      value: 20.498
    - type: recall_at_1
      value: 76.893
    - type: recall_at_10
      value: 94.374
    - type: recall_at_100
      value: 97.409
    - type: recall_at_1000
      value: 98.687
    - type: recall_at_3
      value: 90.513
    - type: recall_at_5
      value: 92.709
  - task:
      type: Retrieval
    dataset:
      type: fiqa
      name: MTEB FiQA2018
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 20.829
    - type: map_at_10
      value: 32.86
    - type: map_at_100
      value: 34.838
    - type: map_at_1000
      value: 35.006
    - type: map_at_3
      value: 28.597
    - type: map_at_5
      value: 31.056
    - type: mrr_at_1
      value: 41.358
    - type: mrr_at_10
      value: 49.542
    - type: mrr_at_100
      value: 50.29900000000001
    - type: mrr_at_1000
      value: 50.334999999999994
    - type: mrr_at_3
      value: 46.579
    - type: mrr_at_5
      value: 48.408
    - type: ndcg_at_1
      value: 41.358
    - type: ndcg_at_10
      value: 40.758
    - type: ndcg_at_100
      value: 47.799
    - type: ndcg_at_1000
      value: 50.589
    - type: ndcg_at_3
      value: 36.695
    - type: ndcg_at_5
      value: 38.193
    - type: precision_at_1
      value: 41.358
    - type: precision_at_10
      value: 11.142000000000001
    - type: precision_at_100
      value: 1.8350000000000002
    - type: precision_at_1000
      value: 0.234
    - type: precision_at_3
      value: 24.023
    - type: precision_at_5
      value: 17.963
    - type: recall_at_1
      value: 20.829
    - type: recall_at_10
      value: 47.467999999999996
    - type: recall_at_100
      value: 73.593
    - type: recall_at_1000
      value: 90.122
    - type: recall_at_3
      value: 32.74
    - type: recall_at_5
      value: 39.608
  - task:
      type: Retrieval
    dataset:
      type: hotpotqa
      name: MTEB HotpotQA
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 40.324
    - type: map_at_10
      value: 64.183
    - type: map_at_100
      value: 65.037
    - type: map_at_1000
      value: 65.094
    - type: map_at_3
      value: 60.663
    - type: map_at_5
      value: 62.951
    - type: mrr_at_1
      value: 80.648
    - type: mrr_at_10
      value: 86.005
    - type: mrr_at_100
      value: 86.157
    - type: mrr_at_1000
      value: 86.162
    - type: mrr_at_3
      value: 85.116
    - type: mrr_at_5
      value: 85.703
    - type: ndcg_at_1
      value: 80.648
    - type: ndcg_at_10
      value: 72.351
    - type: ndcg_at_100
      value: 75.279
    - type: ndcg_at_1000
      value: 76.357
    - type: ndcg_at_3
      value: 67.484
    - type: ndcg_at_5
      value: 70.31500000000001
    - type: precision_at_1
      value: 80.648
    - type: precision_at_10
      value: 15.103
    - type: precision_at_100
      value: 1.7399999999999998
    - type: precision_at_1000
      value: 0.188
    - type: precision_at_3
      value: 43.232
    - type: precision_at_5
      value: 28.165000000000003
    - type: recall_at_1
      value: 40.324
    - type: recall_at_10
      value: 75.517
    - type: recall_at_100
      value: 86.982
    - type: recall_at_1000
      value: 94.072
    - type: recall_at_3
      value: 64.848
    - type: recall_at_5
      value: 70.41199999999999
  - task:
      type: Classification
    dataset:
      type: mteb/imdb
      name: MTEB ImdbClassification
      config: default
      split: test
      revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
    metrics:
    - type: accuracy
      value: 91.4
    - type: ap
      value: 87.4422032289312
    - type: f1
      value: 91.39249564302281
  - task:
      type: Retrieval
    dataset:
      type: msmarco
      name: MTEB MSMARCO
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 22.03
    - type: map_at_10
      value: 34.402
    - type: map_at_100
      value: 35.599
    - type: map_at_1000
      value: 35.648
    - type: map_at_3
      value: 30.603
    - type: map_at_5
      value: 32.889
    - type: mrr_at_1
      value: 22.679
    - type: mrr_at_10
      value: 35.021
    - type: mrr_at_100
      value: 36.162
    - type: mrr_at_1000
      value: 36.205
    - type: mrr_at_3
      value: 31.319999999999997
    - type: mrr_at_5
      value: 33.562
    - type: ndcg_at_1
      value: 22.692999999999998
    - type: ndcg_at_10
      value: 41.258
    - type: ndcg_at_100
      value: 46.967
    - type: ndcg_at_1000
      value: 48.175000000000004
    - type: ndcg_at_3
      value: 33.611000000000004
    - type: ndcg_at_5
      value: 37.675
    - type: precision_at_1
      value: 22.692999999999998
    - type: precision_at_10
      value: 6.5089999999999995
    - type: precision_at_100
      value: 0.936
    - type: precision_at_1000
      value: 0.104
    - type: precision_at_3
      value: 14.413
    - type: precision_at_5
      value: 10.702
    - type: recall_at_1
      value: 22.03
    - type: recall_at_10
      value: 62.248000000000005
    - type: recall_at_100
      value: 88.524
    - type: recall_at_1000
      value: 97.714
    - type: recall_at_3
      value: 41.617
    - type: recall_at_5
      value: 51.359
  - task:
      type: Classification
    dataset:
      type: mteb/mtop_domain
      name: MTEB MTOPDomainClassification (en)
      config: en
      split: test
      revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
    metrics:
    - type: accuracy
      value: 94.36844505243957
    - type: f1
      value: 94.12408743818202
  - task:
      type: Classification
    dataset:
      type: mteb/mtop_intent
      name: MTEB MTOPIntentClassification (en)
      config: en
      split: test
      revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
    metrics:
    - type: accuracy
      value: 76.43410852713177
    - type: f1
      value: 58.501855709435624
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_massive_intent
      name: MTEB MassiveIntentClassification (en)
      config: en
      split: test
      revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
    metrics:
    - type: accuracy
      value: 76.04909213180902
    - type: f1
      value: 74.1800860395823
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_massive_scenario
      name: MTEB MassiveScenarioClassification (en)
      config: en
      split: test
      revision: 7d571f92784cd94a019292a1f45445077d0ef634
    metrics:
    - type: accuracy
      value: 79.76126429051781
    - type: f1
      value: 79.85705217473232
  - task:
      type: Clustering
    dataset:
      type: mteb/medrxiv-clustering-p2p
      name: MTEB MedrxivClusteringP2P
      config: default
      split: test
      revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
    metrics:
    - type: v_measure
      value: 34.70119520292863
  - task:
      type: Clustering
    dataset:
      type: mteb/medrxiv-clustering-s2s
      name: MTEB MedrxivClusteringS2S
      config: default
      split: test
      revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
    metrics:
    - type: v_measure
      value: 32.33544316467486
  - task:
      type: Reranking
    dataset:
      type: mteb/mind_small
      name: MTEB MindSmallReranking
      config: default
      split: test
      revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
    metrics:
    - type: map
      value: 30.75499243990726
    - type: mrr
      value: 31.70602251821063
  - task:
      type: Retrieval
    dataset:
      type: nfcorpus
      name: MTEB NFCorpus
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 6.451999999999999
    - type: map_at_10
      value: 13.918
    - type: map_at_100
      value: 17.316000000000003
    - type: map_at_1000
      value: 18.747
    - type: map_at_3
      value: 10.471
    - type: map_at_5
      value: 12.104
    - type: mrr_at_1
      value: 46.749
    - type: mrr_at_10
      value: 55.717000000000006
    - type: mrr_at_100
      value: 56.249
    - type: mrr_at_1000
      value: 56.288000000000004
    - type: mrr_at_3
      value: 53.818
    - type: mrr_at_5
      value: 55.103
    - type: ndcg_at_1
      value: 45.201
    - type: ndcg_at_10
      value: 35.539
    - type: ndcg_at_100
      value: 32.586
    - type: ndcg_at_1000
      value: 41.486000000000004
    - type: ndcg_at_3
      value: 41.174
    - type: ndcg_at_5
      value: 38.939
    - type: precision_at_1
      value: 46.749
    - type: precision_at_10
      value: 25.944
    - type: precision_at_100
      value: 8.084
    - type: precision_at_1000
      value: 2.076
    - type: precision_at_3
      value: 38.7
    - type: precision_at_5
      value: 33.56
    - type: recall_at_1
      value: 6.451999999999999
    - type: recall_at_10
      value: 17.302
    - type: recall_at_100
      value: 32.14
    - type: recall_at_1000
      value: 64.12
    - type: recall_at_3
      value: 11.219
    - type: recall_at_5
      value: 13.993
  - task:
      type: Retrieval
    dataset:
      type: nq
      name: MTEB NQ
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 32.037
    - type: map_at_10
      value: 46.565
    - type: map_at_100
      value: 47.606
    - type: map_at_1000
      value: 47.636
    - type: map_at_3
      value: 42.459
    - type: map_at_5
      value: 44.762
    - type: mrr_at_1
      value: 36.181999999999995
    - type: mrr_at_10
      value: 49.291000000000004
    - type: mrr_at_100
      value: 50.059
    - type: mrr_at_1000
      value: 50.078
    - type: mrr_at_3
      value: 45.829
    - type: mrr_at_5
      value: 47.797
    - type: ndcg_at_1
      value: 36.153
    - type: ndcg_at_10
      value: 53.983000000000004
    - type: ndcg_at_100
      value: 58.347
    - type: ndcg_at_1000
      value: 59.058
    - type: ndcg_at_3
      value: 46.198
    - type: ndcg_at_5
      value: 50.022
    - type: precision_at_1
      value: 36.153
    - type: precision_at_10
      value: 8.763
    - type: precision_at_100
      value: 1.123
    - type: precision_at_1000
      value: 0.11900000000000001
    - type: precision_at_3
      value: 20.751
    - type: precision_at_5
      value: 14.646999999999998
    - type: recall_at_1
      value: 32.037
    - type: recall_at_10
      value: 74.008
    - type: recall_at_100
      value: 92.893
    - type: recall_at_1000
      value: 98.16
    - type: recall_at_3
      value: 53.705999999999996
    - type: recall_at_5
      value: 62.495
  - task:
      type: Retrieval
    dataset:
      type: quora
      name: MTEB QuoraRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 71.152
    - type: map_at_10
      value: 85.104
    - type: map_at_100
      value: 85.745
    - type: map_at_1000
      value: 85.761
    - type: map_at_3
      value: 82.175
    - type: map_at_5
      value: 84.066
    - type: mrr_at_1
      value: 82.03
    - type: mrr_at_10
      value: 88.115
    - type: mrr_at_100
      value: 88.21
    - type: mrr_at_1000
      value: 88.211
    - type: mrr_at_3
      value: 87.19200000000001
    - type: mrr_at_5
      value: 87.85
    - type: ndcg_at_1
      value: 82.03
    - type: ndcg_at_10
      value: 88.78
    - type: ndcg_at_100
      value: 89.96300000000001
    - type: ndcg_at_1000
      value: 90.056
    - type: ndcg_at_3
      value: 86.051
    - type: ndcg_at_5
      value: 87.63499999999999
    - type: precision_at_1
      value: 82.03
    - type: precision_at_10
      value: 13.450000000000001
    - type: precision_at_100
      value: 1.5310000000000001
    - type: precision_at_1000
      value: 0.157
    - type: precision_at_3
      value: 37.627
    - type: precision_at_5
      value: 24.784
    - type: recall_at_1
      value: 71.152
    - type: recall_at_10
      value: 95.649
    - type: recall_at_100
      value: 99.58200000000001
    - type: recall_at_1000
      value: 99.981
    - type: recall_at_3
      value: 87.767
    - type: recall_at_5
      value: 92.233
  - task:
      type: Clustering
    dataset:
      type: mteb/reddit-clustering
      name: MTEB RedditClustering
      config: default
      split: test
      revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
    metrics:
    - type: v_measure
      value: 56.48713646277477
  - task:
      type: Clustering
    dataset:
      type: mteb/reddit-clustering-p2p
      name: MTEB RedditClusteringP2P
      config: default
      split: test
      revision: 282350215ef01743dc01b456c7f5241fa8937f16
    metrics:
    - type: v_measure
      value: 63.394940772438545
  - task:
      type: Retrieval
    dataset:
      type: scidocs
      name: MTEB SCIDOCS
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 5.043
    - type: map_at_10
      value: 12.949
    - type: map_at_100
      value: 15.146
    - type: map_at_1000
      value: 15.495000000000001
    - type: map_at_3
      value: 9.333
    - type: map_at_5
      value: 11.312999999999999
    - type: mrr_at_1
      value: 24.9
    - type: mrr_at_10
      value: 35.958
    - type: mrr_at_100
      value: 37.152
    - type: mrr_at_1000
      value: 37.201
    - type: mrr_at_3
      value: 32.667
    - type: mrr_at_5
      value: 34.567
    - type: ndcg_at_1
      value: 24.9
    - type: ndcg_at_10
      value: 21.298000000000002
    - type: ndcg_at_100
      value: 29.849999999999998
    - type: ndcg_at_1000
      value: 35.506
    - type: ndcg_at_3
      value: 20.548
    - type: ndcg_at_5
      value: 18.064
    - type: precision_at_1
      value: 24.9
    - type: precision_at_10
      value: 10.9
    - type: precision_at_100
      value: 2.331
    - type: precision_at_1000
      value: 0.367
    - type: precision_at_3
      value: 19.267
    - type: precision_at_5
      value: 15.939999999999998
    - type: recall_at_1
      value: 5.043
    - type: recall_at_10
      value: 22.092
    - type: recall_at_100
      value: 47.323
    - type: recall_at_1000
      value: 74.553
    - type: recall_at_3
      value: 11.728
    - type: recall_at_5
      value: 16.188
  - task:
      type: STS
    dataset:
      type: mteb/sickr-sts
      name: MTEB SICK-R
      config: default
      split: test
      revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
    metrics:
    - type: cos_sim_pearson
      value: 83.7007085938325
    - type: cos_sim_spearman
      value: 80.0171084446234
    - type: euclidean_pearson
      value: 81.28133218355893
    - type: euclidean_spearman
      value: 79.99291731740131
    - type: manhattan_pearson
      value: 81.22926922327846
    - type: manhattan_spearman
      value: 79.94444878127038
  - task:
      type: STS
    dataset:
      type: mteb/sts12-sts
      name: MTEB STS12
      config: default
      split: test
      revision: a0d554a64d88156834ff5ae9920b964011b16384
    metrics:
    - type: cos_sim_pearson
      value: 85.7411883252923
    - type: cos_sim_spearman
      value: 77.93462937801245
    - type: euclidean_pearson
      value: 83.00858563882404
    - type: euclidean_spearman
      value: 77.82717362433257
    - type: manhattan_pearson
      value: 82.92887645790769
    - type: manhattan_spearman
      value: 77.78807488222115
  - task:
      type: STS
    dataset:
      type: mteb/sts13-sts
      name: MTEB STS13
      config: default
      split: test
      revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
    metrics:
    - type: cos_sim_pearson
      value: 82.04222459361023
    - type: cos_sim_spearman
      value: 83.85931509330395
    - type: euclidean_pearson
      value: 83.26916063876055
    - type: euclidean_spearman
      value: 83.98621985648353
    - type: manhattan_pearson
      value: 83.14935679184327
    - type: manhattan_spearman
      value: 83.87938828586304
  - task:
      type: STS
    dataset:
      type: mteb/sts14-sts
      name: MTEB STS14
      config: default
      split: test
      revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
    metrics:
    - type: cos_sim_pearson
      value: 81.41136639535318
    - type: cos_sim_spearman
      value: 81.51200091040481
    - type: euclidean_pearson
      value: 81.45382456114775
    - type: euclidean_spearman
      value: 81.46201181707931
    - type: manhattan_pearson
      value: 81.37243088439584
    - type: manhattan_spearman
      value: 81.39828421893426
  - task:
      type: STS
    dataset:
      type: mteb/sts15-sts
      name: MTEB STS15
      config: default
      split: test
      revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
    metrics:
    - type: cos_sim_pearson
      value: 85.71942451732227
    - type: cos_sim_spearman
      value: 87.33044482064973
    - type: euclidean_pearson
      value: 86.58580899365178
    - type: euclidean_spearman
      value: 87.09206723832895
    - type: manhattan_pearson
      value: 86.47460784157013
    - type: manhattan_spearman
      value: 86.98367656583076
  - task:
      type: STS
    dataset:
      type: mteb/sts16-sts
      name: MTEB STS16
      config: default
      split: test
      revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
    metrics:
    - type: cos_sim_pearson
      value: 83.55868078863449
    - type: cos_sim_spearman
      value: 85.38299230074065
    - type: euclidean_pearson
      value: 84.64715256244595
    - type: euclidean_spearman
      value: 85.49112229604047
    - type: manhattan_pearson
      value: 84.60814346792462
    - type: manhattan_spearman
      value: 85.44886026766822
  - task:
      type: STS
    dataset:
      type: mteb/sts17-crosslingual-sts
      name: MTEB STS17 (en-en)
      config: en-en
      split: test
      revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
    metrics:
    - type: cos_sim_pearson
      value: 84.99292526370614
    - type: cos_sim_spearman
      value: 85.58139465695983
    - type: euclidean_pearson
      value: 86.51325066734084
    - type: euclidean_spearman
      value: 85.56736418284562
    - type: manhattan_pearson
      value: 86.48190836601357
    - type: manhattan_spearman
      value: 85.51616256224258
  - task:
      type: STS
    dataset:
      type: mteb/sts22-crosslingual-sts
      name: MTEB STS22 (en)
      config: en
      split: test
      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
    metrics:
    - type: cos_sim_pearson
      value: 64.54124715078807
    - type: cos_sim_spearman
      value: 65.32134275948374
    - type: euclidean_pearson
      value: 67.09791698300816
    - type: euclidean_spearman
      value: 65.79468982468465
    - type: manhattan_pearson
      value: 67.13304723693966
    - type: manhattan_spearman
      value: 65.68439995849283
  - task:
      type: STS
    dataset:
      type: mteb/stsbenchmark-sts
      name: MTEB STSBenchmark
      config: default
      split: test
      revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
    metrics:
    - type: cos_sim_pearson
      value: 83.4231099581624
    - type: cos_sim_spearman
      value: 85.95475815226862
    - type: euclidean_pearson
      value: 85.00339401999706
    - type: euclidean_spearman
      value: 85.74133081802971
    - type: manhattan_pearson
      value: 85.00407987181666
    - type: manhattan_spearman
      value: 85.77509596397363
  - task:
      type: Reranking
    dataset:
      type: mteb/scidocs-reranking
      name: MTEB SciDocsRR
      config: default
      split: test
      revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
    metrics:
    - type: map
      value: 87.25666719585716
    - type: mrr
      value: 96.32769917083642
  - task:
      type: Retrieval
    dataset:
      type: scifact
      name: MTEB SciFact
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 57.828
    - type: map_at_10
      value: 68.369
    - type: map_at_100
      value: 68.83399999999999
    - type: map_at_1000
      value: 68.856
    - type: map_at_3
      value: 65.38000000000001
    - type: map_at_5
      value: 67.06299999999999
    - type: mrr_at_1
      value: 61
    - type: mrr_at_10
      value: 69.45400000000001
    - type: mrr_at_100
      value: 69.785
    - type: mrr_at_1000
      value: 69.807
    - type: mrr_at_3
      value: 67
    - type: mrr_at_5
      value: 68.43299999999999
    - type: ndcg_at_1
      value: 61
    - type: ndcg_at_10
      value: 73.258
    - type: ndcg_at_100
      value: 75.173
    - type: ndcg_at_1000
      value: 75.696
    - type: ndcg_at_3
      value: 68.162
    - type: ndcg_at_5
      value: 70.53399999999999
    - type: precision_at_1
      value: 61
    - type: precision_at_10
      value: 9.8
    - type: precision_at_100
      value: 1.087
    - type: precision_at_1000
      value: 0.11299999999999999
    - type: precision_at_3
      value: 27
    - type: precision_at_5
      value: 17.666999999999998
    - type: recall_at_1
      value: 57.828
    - type: recall_at_10
      value: 87.122
    - type: recall_at_100
      value: 95.667
    - type: recall_at_1000
      value: 99.667
    - type: recall_at_3
      value: 73.139
    - type: recall_at_5
      value: 79.361
  - task:
      type: PairClassification
    dataset:
      type: mteb/sprintduplicatequestions-pairclassification
      name: MTEB SprintDuplicateQuestions
      config: default
      split: test
      revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
    metrics:
    - type: cos_sim_accuracy
      value: 99.85247524752475
    - type: cos_sim_ap
      value: 96.25640197639723
    - type: cos_sim_f1
      value: 92.37851662404091
    - type: cos_sim_precision
      value: 94.55497382198953
    - type: cos_sim_recall
      value: 90.3
    - type: dot_accuracy
      value: 99.76138613861386
    - type: dot_ap
      value: 93.40295864389073
    - type: dot_f1
      value: 87.64267990074441
    - type: dot_precision
      value: 86.99507389162562
    - type: dot_recall
      value: 88.3
    - type: euclidean_accuracy
      value: 99.85049504950496
    - type: euclidean_ap
      value: 96.24254350525462
    - type: euclidean_f1
      value: 92.32323232323232
    - type: euclidean_precision
      value: 93.26530612244898
    - type: euclidean_recall
      value: 91.4
    - type: manhattan_accuracy
      value: 99.85346534653465
    - type: manhattan_ap
      value: 96.2635334753325
    - type: manhattan_f1
      value: 92.37899073120495
    - type: manhattan_precision
      value: 95.22292993630573
    - type: manhattan_recall
      value: 89.7
    - type: max_accuracy
      value: 99.85346534653465
    - type: max_ap
      value: 96.2635334753325
    - type: max_f1
      value: 92.37899073120495
  - task:
      type: Clustering
    dataset:
      type: mteb/stackexchange-clustering
      name: MTEB StackExchangeClustering
      config: default
      split: test
      revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
    metrics:
    - type: v_measure
      value: 65.83905786483794
  - task:
      type: Clustering
    dataset:
      type: mteb/stackexchange-clustering-p2p
      name: MTEB StackExchangeClusteringP2P
      config: default
      split: test
      revision: 815ca46b2622cec33ccafc3735d572c266efdb44
    metrics:
    - type: v_measure
      value: 35.031896152126436
  - task:
      type: Reranking
    dataset:
      type: mteb/stackoverflowdupquestions-reranking
      name: MTEB StackOverflowDupQuestions
      config: default
      split: test
      revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
    metrics:
    - type: map
      value: 54.551326709447146
    - type: mrr
      value: 55.43758222986165
  - task:
      type: Summarization
    dataset:
      type: mteb/summeval
      name: MTEB SummEval
      config: default
      split: test
      revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
    metrics:
    - type: cos_sim_pearson
      value: 30.305688567308874
    - type: cos_sim_spearman
      value: 29.27135743434515
    - type: dot_pearson
      value: 30.336741878796563
    - type: dot_spearman
      value: 30.513365725895937
  - task:
      type: Retrieval
    dataset:
      type: trec-covid
      name: MTEB TRECCOVID
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 0.245
    - type: map_at_10
      value: 1.92
    - type: map_at_100
      value: 10.519
    - type: map_at_1000
      value: 23.874000000000002
    - type: map_at_3
      value: 0.629
    - type: map_at_5
      value: 1.0290000000000001
    - type: mrr_at_1
      value: 88
    - type: mrr_at_10
      value: 93.5
    - type: mrr_at_100
      value: 93.5
    - type: mrr_at_1000
      value: 93.5
    - type: mrr_at_3
      value: 93
    - type: mrr_at_5
      value: 93.5
    - type: ndcg_at_1
      value: 84
    - type: ndcg_at_10
      value: 76.447
    - type: ndcg_at_100
      value: 56.516
    - type: ndcg_at_1000
      value: 48.583999999999996
    - type: ndcg_at_3
      value: 78.877
    - type: ndcg_at_5
      value: 79.174
    - type: precision_at_1
      value: 88
    - type: precision_at_10
      value: 80.60000000000001
    - type: precision_at_100
      value: 57.64
    - type: precision_at_1000
      value: 21.227999999999998
    - type: precision_at_3
      value: 82
    - type: precision_at_5
      value: 83.6
    - type: recall_at_1
      value: 0.245
    - type: recall_at_10
      value: 2.128
    - type: recall_at_100
      value: 13.767
    - type: recall_at_1000
      value: 44.958
    - type: recall_at_3
      value: 0.654
    - type: recall_at_5
      value: 1.111
  - task:
      type: Retrieval
    dataset:
      type: webis-touche2020
      name: MTEB Touche2020
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 2.5170000000000003
    - type: map_at_10
      value: 10.915
    - type: map_at_100
      value: 17.535
    - type: map_at_1000
      value: 19.042
    - type: map_at_3
      value: 5.689
    - type: map_at_5
      value: 7.837
    - type: mrr_at_1
      value: 34.694
    - type: mrr_at_10
      value: 49.547999999999995
    - type: mrr_at_100
      value: 50.653000000000006
    - type: mrr_at_1000
      value: 50.653000000000006
    - type: mrr_at_3
      value: 44.558
    - type: mrr_at_5
      value: 48.333
    - type: ndcg_at_1
      value: 32.653
    - type: ndcg_at_10
      value: 26.543
    - type: ndcg_at_100
      value: 38.946
    - type: ndcg_at_1000
      value: 49.406
    - type: ndcg_at_3
      value: 29.903000000000002
    - type: ndcg_at_5
      value: 29.231
    - type: precision_at_1
      value: 34.694
    - type: precision_at_10
      value: 23.265
    - type: precision_at_100
      value: 8.102
    - type: precision_at_1000
      value: 1.5
    - type: precision_at_3
      value: 31.293
    - type: precision_at_5
      value: 29.796
    - type: recall_at_1
      value: 2.5170000000000003
    - type: recall_at_10
      value: 16.88
    - type: recall_at_100
      value: 49.381
    - type: recall_at_1000
      value: 81.23899999999999
    - type: recall_at_3
      value: 6.965000000000001
    - type: recall_at_5
      value: 10.847999999999999
  - task:
      type: Classification
    dataset:
      type: mteb/toxic_conversations_50k
      name: MTEB ToxicConversationsClassification
      config: default
      split: test
      revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
    metrics:
    - type: accuracy
      value: 71.5942
    - type: ap
      value: 13.92074156956546
    - type: f1
      value: 54.671999698839066
  - task:
      type: Classification
    dataset:
      type: mteb/tweet_sentiment_extraction
      name: MTEB TweetSentimentExtractionClassification
      config: default
      split: test
      revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
    metrics:
    - type: accuracy
      value: 59.39728353140916
    - type: f1
      value: 59.68980496759517
  - task:
      type: Clustering
    dataset:
      type: mteb/twentynewsgroups-clustering
      name: MTEB TwentyNewsgroupsClustering
      config: default
      split: test
      revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
    metrics:
    - type: v_measure
      value: 52.11181870104935
  - task:
      type: PairClassification
    dataset:
      type: mteb/twittersemeval2015-pairclassification
      name: MTEB TwitterSemEval2015
      config: default
      split: test
      revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
    metrics:
    - type: cos_sim_accuracy
      value: 86.46957143708649
    - type: cos_sim_ap
      value: 76.16120197845457
    - type: cos_sim_f1
      value: 69.69919295671315
    - type: cos_sim_precision
      value: 64.94986326344576
    - type: cos_sim_recall
      value: 75.19788918205805
    - type: dot_accuracy
      value: 83.0780234845324
    - type: dot_ap
      value: 64.21717343541934
    - type: dot_f1
      value: 59.48375497624245
    - type: dot_precision
      value: 57.94345759319489
    - type: dot_recall
      value: 61.108179419525065
    - type: euclidean_accuracy
      value: 86.6543482148179
    - type: euclidean_ap
      value: 76.4527555010203
    - type: euclidean_f1
      value: 70.10156056477584
    - type: euclidean_precision
      value: 66.05975723622782
    - type: euclidean_recall
      value: 74.67018469656992
    - type: manhattan_accuracy
      value: 86.66030875603504
    - type: manhattan_ap
      value: 76.40304567255436
    - type: manhattan_f1
      value: 70.05275426328058
    - type: manhattan_precision
      value: 65.4666360926393
    - type: manhattan_recall
      value: 75.32981530343008
    - type: max_accuracy
      value: 86.66030875603504
    - type: max_ap
      value: 76.4527555010203
    - type: max_f1
      value: 70.10156056477584
  - task:
      type: PairClassification
    dataset:
      type: mteb/twitterurlcorpus-pairclassification
      name: MTEB TwitterURLCorpus
      config: default
      split: test
      revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
    metrics:
    - type: cos_sim_accuracy
      value: 88.42123646524624
    - type: cos_sim_ap
      value: 85.15431437761646
    - type: cos_sim_f1
      value: 76.98069301530742
    - type: cos_sim_precision
      value: 72.9314502239063
    - type: cos_sim_recall
      value: 81.50600554357868
    - type: dot_accuracy
      value: 86.70974502270346
    - type: dot_ap
      value: 80.77621563599457
    - type: dot_f1
      value: 73.87058697285117
    - type: dot_precision
      value: 68.98256396552877
    - type: dot_recall
      value: 79.50415768401602
    - type: euclidean_accuracy
      value: 88.46392672798541
    - type: euclidean_ap
      value: 85.20370297495491
    - type: euclidean_f1
      value: 77.01372369624886
    - type: euclidean_precision
      value: 73.39052800446397
    - type: euclidean_recall
      value: 81.01324299353249
    - type: manhattan_accuracy
      value: 88.43481973066325
    - type: manhattan_ap
      value: 85.16318289864545
    - type: manhattan_f1
      value: 76.90884877182597
    - type: manhattan_precision
      value: 74.01737396753062
    - type: manhattan_recall
      value: 80.03541730828458
    - type: max_accuracy
      value: 88.46392672798541
    - type: max_ap
      value: 85.20370297495491
    - type: max_f1
      value: 77.01372369624886
license: mit
language:
- en