Gitee AI
README.md88.67 kB
一键复制
元数据

tags:
- mteb
- sentence transformers
model-index:
- name: bge-small-en
  results:
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_counterfactual
      name: MTEB AmazonCounterfactualClassification (en)
      config: en
      split: test
      revision: e8379541af4e31359cca9fbcf4b00f2671dba205
    metrics:
    - type: accuracy
      value: 74.34328358208955
    - type: ap
      value: 37.59947775195661
    - type: f1
      value: 68.548415491933
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_polarity
      name: MTEB AmazonPolarityClassification
      config: default
      split: test
      revision: e2d317d38cd51312af73b3d32a06d1a08b442046
    metrics:
    - type: accuracy
      value: 93.04527499999999
    - type: ap
      value: 89.60696356772135
    - type: f1
      value: 93.03361469382438
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_reviews_multi
      name: MTEB AmazonReviewsClassification (en)
      config: en
      split: test
      revision: 1399c76144fd37290681b995c656ef9b2e06e26d
    metrics:
    - type: accuracy
      value: 46.08
    - type: f1
      value: 45.66249835363254
  - task:
      type: Retrieval
    dataset:
      type: arguana
      name: MTEB ArguAna
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 35.205999999999996
    - type: map_at_10
      value: 50.782000000000004
    - type: map_at_100
      value: 51.547
    - type: map_at_1000
      value: 51.554
    - type: map_at_3
      value: 46.515
    - type: map_at_5
      value: 49.296
    - type: mrr_at_1
      value: 35.632999999999996
    - type: mrr_at_10
      value: 50.958999999999996
    - type: mrr_at_100
      value: 51.724000000000004
    - type: mrr_at_1000
      value: 51.731
    - type: mrr_at_3
      value: 46.669
    - type: mrr_at_5
      value: 49.439
    - type: ndcg_at_1
      value: 35.205999999999996
    - type: ndcg_at_10
      value: 58.835
    - type: ndcg_at_100
      value: 62.095
    - type: ndcg_at_1000
      value: 62.255
    - type: ndcg_at_3
      value: 50.255
    - type: ndcg_at_5
      value: 55.296
    - type: precision_at_1
      value: 35.205999999999996
    - type: precision_at_10
      value: 8.421
    - type: precision_at_100
      value: 0.984
    - type: precision_at_1000
      value: 0.1
    - type: precision_at_3
      value: 20.365
    - type: precision_at_5
      value: 14.680000000000001
    - type: recall_at_1
      value: 35.205999999999996
    - type: recall_at_10
      value: 84.211
    - type: recall_at_100
      value: 98.43499999999999
    - type: recall_at_1000
      value: 99.644
    - type: recall_at_3
      value: 61.095
    - type: recall_at_5
      value: 73.4
  - task:
      type: Clustering
    dataset:
      type: mteb/arxiv-clustering-p2p
      name: MTEB ArxivClusteringP2P
      config: default
      split: test
      revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
    metrics:
    - type: v_measure
      value: 47.52644476278646
  - task:
      type: Clustering
    dataset:
      type: mteb/arxiv-clustering-s2s
      name: MTEB ArxivClusteringS2S
      config: default
      split: test
      revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
    metrics:
    - type: v_measure
      value: 39.973045724188964
  - task:
      type: Reranking
    dataset:
      type: mteb/askubuntudupquestions-reranking
      name: MTEB AskUbuntuDupQuestions
      config: default
      split: test
      revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
    metrics:
    - type: map
      value: 62.28285314871488
    - type: mrr
      value: 74.52743701358659
  - task:
      type: STS
    dataset:
      type: mteb/biosses-sts
      name: MTEB BIOSSES
      config: default
      split: test
      revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
    metrics:
    - type: cos_sim_pearson
      value: 80.09041909160327
    - type: cos_sim_spearman
      value: 79.96266537706944
    - type: euclidean_pearson
      value: 79.50774978162241
    - type: euclidean_spearman
      value: 79.9144715078551
    - type: manhattan_pearson
      value: 79.2062139879302
    - type: manhattan_spearman
      value: 79.35000081468212
  - task:
      type: Classification
    dataset:
      type: mteb/banking77
      name: MTEB Banking77Classification
      config: default
      split: test
      revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
    metrics:
    - type: accuracy
      value: 85.31493506493506
    - type: f1
      value: 85.2704557977762
  - task:
      type: Clustering
    dataset:
      type: mteb/biorxiv-clustering-p2p
      name: MTEB BiorxivClusteringP2P
      config: default
      split: test
      revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
    metrics:
    - type: v_measure
      value: 39.6837242810816
  - task:
      type: Clustering
    dataset:
      type: mteb/biorxiv-clustering-s2s
      name: MTEB BiorxivClusteringS2S
      config: default
      split: test
      revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
    metrics:
    - type: v_measure
      value: 35.38881249555897
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackAndroidRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 27.884999999999998
    - type: map_at_10
      value: 39.574
    - type: map_at_100
      value: 40.993
    - type: map_at_1000
      value: 41.129
    - type: map_at_3
      value: 36.089
    - type: map_at_5
      value: 38.191
    - type: mrr_at_1
      value: 34.477999999999994
    - type: mrr_at_10
      value: 45.411
    - type: mrr_at_100
      value: 46.089999999999996
    - type: mrr_at_1000
      value: 46.147
    - type: mrr_at_3
      value: 42.346000000000004
    - type: mrr_at_5
      value: 44.292
    - type: ndcg_at_1
      value: 34.477999999999994
    - type: ndcg_at_10
      value: 46.123999999999995
    - type: ndcg_at_100
      value: 51.349999999999994
    - type: ndcg_at_1000
      value: 53.578
    - type: ndcg_at_3
      value: 40.824
    - type: ndcg_at_5
      value: 43.571
    - type: precision_at_1
      value: 34.477999999999994
    - type: precision_at_10
      value: 8.841000000000001
    - type: precision_at_100
      value: 1.4460000000000002
    - type: precision_at_1000
      value: 0.192
    - type: precision_at_3
      value: 19.742
    - type: precision_at_5
      value: 14.421000000000001
    - type: recall_at_1
      value: 27.884999999999998
    - type: recall_at_10
      value: 59.087
    - type: recall_at_100
      value: 80.609
    - type: recall_at_1000
      value: 95.054
    - type: recall_at_3
      value: 44.082
    - type: recall_at_5
      value: 51.593999999999994
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackEnglishRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 30.639
    - type: map_at_10
      value: 40.047
    - type: map_at_100
      value: 41.302
    - type: map_at_1000
      value: 41.425
    - type: map_at_3
      value: 37.406
    - type: map_at_5
      value: 38.934000000000005
    - type: mrr_at_1
      value: 37.707
    - type: mrr_at_10
      value: 46.082
    - type: mrr_at_100
      value: 46.745
    - type: mrr_at_1000
      value: 46.786
    - type: mrr_at_3
      value: 43.980999999999995
    - type: mrr_at_5
      value: 45.287
    - type: ndcg_at_1
      value: 37.707
    - type: ndcg_at_10
      value: 45.525
    - type: ndcg_at_100
      value: 49.976
    - type: ndcg_at_1000
      value: 51.94499999999999
    - type: ndcg_at_3
      value: 41.704
    - type: ndcg_at_5
      value: 43.596000000000004
    - type: precision_at_1
      value: 37.707
    - type: precision_at_10
      value: 8.465
    - type: precision_at_100
      value: 1.375
    - type: precision_at_1000
      value: 0.183
    - type: precision_at_3
      value: 19.979
    - type: precision_at_5
      value: 14.115
    - type: recall_at_1
      value: 30.639
    - type: recall_at_10
      value: 54.775
    - type: recall_at_100
      value: 73.678
    - type: recall_at_1000
      value: 86.142
    - type: recall_at_3
      value: 43.230000000000004
    - type: recall_at_5
      value: 48.622
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackGamingRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 38.038
    - type: map_at_10
      value: 49.922
    - type: map_at_100
      value: 51.032
    - type: map_at_1000
      value: 51.085
    - type: map_at_3
      value: 46.664
    - type: map_at_5
      value: 48.588
    - type: mrr_at_1
      value: 43.95
    - type: mrr_at_10
      value: 53.566
    - type: mrr_at_100
      value: 54.318999999999996
    - type: mrr_at_1000
      value: 54.348
    - type: mrr_at_3
      value: 51.066
    - type: mrr_at_5
      value: 52.649
    - type: ndcg_at_1
      value: 43.95
    - type: ndcg_at_10
      value: 55.676
    - type: ndcg_at_100
      value: 60.126000000000005
    - type: ndcg_at_1000
      value: 61.208
    - type: ndcg_at_3
      value: 50.20400000000001
    - type: ndcg_at_5
      value: 53.038
    - type: precision_at_1
      value: 43.95
    - type: precision_at_10
      value: 8.953
    - type: precision_at_100
      value: 1.2109999999999999
    - type: precision_at_1000
      value: 0.135
    - type: precision_at_3
      value: 22.256999999999998
    - type: precision_at_5
      value: 15.524
    - type: recall_at_1
      value: 38.038
    - type: recall_at_10
      value: 69.15
    - type: recall_at_100
      value: 88.31599999999999
    - type: recall_at_1000
      value: 95.993
    - type: recall_at_3
      value: 54.663
    - type: recall_at_5
      value: 61.373
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackGisRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 24.872
    - type: map_at_10
      value: 32.912
    - type: map_at_100
      value: 33.972
    - type: map_at_1000
      value: 34.046
    - type: map_at_3
      value: 30.361
    - type: map_at_5
      value: 31.704
    - type: mrr_at_1
      value: 26.779999999999998
    - type: mrr_at_10
      value: 34.812
    - type: mrr_at_100
      value: 35.754999999999995
    - type: mrr_at_1000
      value: 35.809000000000005
    - type: mrr_at_3
      value: 32.335
    - type: mrr_at_5
      value: 33.64
    - type: ndcg_at_1
      value: 26.779999999999998
    - type: ndcg_at_10
      value: 37.623
    - type: ndcg_at_100
      value: 42.924
    - type: ndcg_at_1000
      value: 44.856
    - type: ndcg_at_3
      value: 32.574
    - type: ndcg_at_5
      value: 34.842
    - type: precision_at_1
      value: 26.779999999999998
    - type: precision_at_10
      value: 5.729
    - type: precision_at_100
      value: 0.886
    - type: precision_at_1000
      value: 0.109
    - type: precision_at_3
      value: 13.559
    - type: precision_at_5
      value: 9.469
    - type: recall_at_1
      value: 24.872
    - type: recall_at_10
      value: 50.400999999999996
    - type: recall_at_100
      value: 74.954
    - type: recall_at_1000
      value: 89.56
    - type: recall_at_3
      value: 36.726
    - type: recall_at_5
      value: 42.138999999999996
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackMathematicaRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 16.803
    - type: map_at_10
      value: 24.348
    - type: map_at_100
      value: 25.56
    - type: map_at_1000
      value: 25.668000000000003
    - type: map_at_3
      value: 21.811
    - type: map_at_5
      value: 23.287
    - type: mrr_at_1
      value: 20.771
    - type: mrr_at_10
      value: 28.961
    - type: mrr_at_100
      value: 29.979
    - type: mrr_at_1000
      value: 30.046
    - type: mrr_at_3
      value: 26.555
    - type: mrr_at_5
      value: 28.060000000000002
    - type: ndcg_at_1
      value: 20.771
    - type: ndcg_at_10
      value: 29.335
    - type: ndcg_at_100
      value: 35.188
    - type: ndcg_at_1000
      value: 37.812
    - type: ndcg_at_3
      value: 24.83
    - type: ndcg_at_5
      value: 27.119
    - type: precision_at_1
      value: 20.771
    - type: precision_at_10
      value: 5.4350000000000005
    - type: precision_at_100
      value: 0.9480000000000001
    - type: precision_at_1000
      value: 0.13
    - type: precision_at_3
      value: 11.982
    - type: precision_at_5
      value: 8.831
    - type: recall_at_1
      value: 16.803
    - type: recall_at_10
      value: 40.039
    - type: recall_at_100
      value: 65.83200000000001
    - type: recall_at_1000
      value: 84.478
    - type: recall_at_3
      value: 27.682000000000002
    - type: recall_at_5
      value: 33.535
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackPhysicsRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 28.345
    - type: map_at_10
      value: 37.757000000000005
    - type: map_at_100
      value: 39.141
    - type: map_at_1000
      value: 39.262
    - type: map_at_3
      value: 35.183
    - type: map_at_5
      value: 36.592
    - type: mrr_at_1
      value: 34.649
    - type: mrr_at_10
      value: 43.586999999999996
    - type: mrr_at_100
      value: 44.481
    - type: mrr_at_1000
      value: 44.542
    - type: mrr_at_3
      value: 41.29
    - type: mrr_at_5
      value: 42.642
    - type: ndcg_at_1
      value: 34.649
    - type: ndcg_at_10
      value: 43.161
    - type: ndcg_at_100
      value: 48.734
    - type: ndcg_at_1000
      value: 51.046
    - type: ndcg_at_3
      value: 39.118
    - type: ndcg_at_5
      value: 41.022
    - type: precision_at_1
      value: 34.649
    - type: precision_at_10
      value: 7.603
    - type: precision_at_100
      value: 1.209
    - type: precision_at_1000
      value: 0.157
    - type: precision_at_3
      value: 18.319
    - type: precision_at_5
      value: 12.839
    - type: recall_at_1
      value: 28.345
    - type: recall_at_10
      value: 53.367
    - type: recall_at_100
      value: 76.453
    - type: recall_at_1000
      value: 91.82000000000001
    - type: recall_at_3
      value: 41.636
    - type: recall_at_5
      value: 46.760000000000005
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackProgrammersRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 22.419
    - type: map_at_10
      value: 31.716
    - type: map_at_100
      value: 33.152
    - type: map_at_1000
      value: 33.267
    - type: map_at_3
      value: 28.74
    - type: map_at_5
      value: 30.48
    - type: mrr_at_1
      value: 28.310999999999996
    - type: mrr_at_10
      value: 37.039
    - type: mrr_at_100
      value: 38.09
    - type: mrr_at_1000
      value: 38.145
    - type: mrr_at_3
      value: 34.437
    - type: mrr_at_5
      value: 36.024
    - type: ndcg_at_1
      value: 28.310999999999996
    - type: ndcg_at_10
      value: 37.41
    - type: ndcg_at_100
      value: 43.647999999999996
    - type: ndcg_at_1000
      value: 46.007
    - type: ndcg_at_3
      value: 32.509
    - type: ndcg_at_5
      value: 34.943999999999996
    - type: precision_at_1
      value: 28.310999999999996
    - type: precision_at_10
      value: 6.963
    - type: precision_at_100
      value: 1.1860000000000002
    - type: precision_at_1000
      value: 0.154
    - type: precision_at_3
      value: 15.867999999999999
    - type: precision_at_5
      value: 11.507000000000001
    - type: recall_at_1
      value: 22.419
    - type: recall_at_10
      value: 49.28
    - type: recall_at_100
      value: 75.802
    - type: recall_at_1000
      value: 92.032
    - type: recall_at_3
      value: 35.399
    - type: recall_at_5
      value: 42.027
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 24.669249999999998
    - type: map_at_10
      value: 33.332583333333325
    - type: map_at_100
      value: 34.557833333333335
    - type: map_at_1000
      value: 34.67141666666666
    - type: map_at_3
      value: 30.663166666666662
    - type: map_at_5
      value: 32.14883333333333
    - type: mrr_at_1
      value: 29.193833333333334
    - type: mrr_at_10
      value: 37.47625
    - type: mrr_at_100
      value: 38.3545
    - type: mrr_at_1000
      value: 38.413166666666676
    - type: mrr_at_3
      value: 35.06741666666667
    - type: mrr_at_5
      value: 36.450666666666656
    - type: ndcg_at_1
      value: 29.193833333333334
    - type: ndcg_at_10
      value: 38.505416666666676
    - type: ndcg_at_100
      value: 43.81125
    - type: ndcg_at_1000
      value: 46.09558333333333
    - type: ndcg_at_3
      value: 33.90916666666667
    - type: ndcg_at_5
      value: 36.07666666666666
    - type: precision_at_1
      value: 29.193833333333334
    - type: precision_at_10
      value: 6.7251666666666665
    - type: precision_at_100
      value: 1.1058333333333332
    - type: precision_at_1000
      value: 0.14833333333333332
    - type: precision_at_3
      value: 15.554166666666665
    - type: precision_at_5
      value: 11.079250000000002
    - type: recall_at_1
      value: 24.669249999999998
    - type: recall_at_10
      value: 49.75583333333332
    - type: recall_at_100
      value: 73.06908333333332
    - type: recall_at_1000
      value: 88.91316666666667
    - type: recall_at_3
      value: 36.913250000000005
    - type: recall_at_5
      value: 42.48641666666666
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackStatsRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 24.044999999999998
    - type: map_at_10
      value: 30.349999999999998
    - type: map_at_100
      value: 31.273
    - type: map_at_1000
      value: 31.362000000000002
    - type: map_at_3
      value: 28.508
    - type: map_at_5
      value: 29.369
    - type: mrr_at_1
      value: 26.994
    - type: mrr_at_10
      value: 33.12
    - type: mrr_at_100
      value: 33.904
    - type: mrr_at_1000
      value: 33.967000000000006
    - type: mrr_at_3
      value: 31.365
    - type: mrr_at_5
      value: 32.124
    - type: ndcg_at_1
      value: 26.994
    - type: ndcg_at_10
      value: 34.214
    - type: ndcg_at_100
      value: 38.681
    - type: ndcg_at_1000
      value: 40.926
    - type: ndcg_at_3
      value: 30.725
    - type: ndcg_at_5
      value: 31.967000000000002
    - type: precision_at_1
      value: 26.994
    - type: precision_at_10
      value: 5.215
    - type: precision_at_100
      value: 0.807
    - type: precision_at_1000
      value: 0.108
    - type: precision_at_3
      value: 12.986
    - type: precision_at_5
      value: 8.712
    - type: recall_at_1
      value: 24.044999999999998
    - type: recall_at_10
      value: 43.456
    - type: recall_at_100
      value: 63.675000000000004
    - type: recall_at_1000
      value: 80.05499999999999
    - type: recall_at_3
      value: 33.561
    - type: recall_at_5
      value: 36.767
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackTexRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 15.672
    - type: map_at_10
      value: 22.641
    - type: map_at_100
      value: 23.75
    - type: map_at_1000
      value: 23.877000000000002
    - type: map_at_3
      value: 20.219
    - type: map_at_5
      value: 21.648
    - type: mrr_at_1
      value: 18.823
    - type: mrr_at_10
      value: 26.101999999999997
    - type: mrr_at_100
      value: 27.038
    - type: mrr_at_1000
      value: 27.118
    - type: mrr_at_3
      value: 23.669
    - type: mrr_at_5
      value: 25.173000000000002
    - type: ndcg_at_1
      value: 18.823
    - type: ndcg_at_10
      value: 27.176000000000002
    - type: ndcg_at_100
      value: 32.42
    - type: ndcg_at_1000
      value: 35.413
    - type: ndcg_at_3
      value: 22.756999999999998
    - type: ndcg_at_5
      value: 25.032
    - type: precision_at_1
      value: 18.823
    - type: precision_at_10
      value: 5.034000000000001
    - type: precision_at_100
      value: 0.895
    - type: precision_at_1000
      value: 0.132
    - type: precision_at_3
      value: 10.771
    - type: precision_at_5
      value: 8.1
    - type: recall_at_1
      value: 15.672
    - type: recall_at_10
      value: 37.296
    - type: recall_at_100
      value: 60.863
    - type: recall_at_1000
      value: 82.234
    - type: recall_at_3
      value: 25.330000000000002
    - type: recall_at_5
      value: 30.964000000000002
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackUnixRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 24.633
    - type: map_at_10
      value: 32.858
    - type: map_at_100
      value: 34.038000000000004
    - type: map_at_1000
      value: 34.141
    - type: map_at_3
      value: 30.209000000000003
    - type: map_at_5
      value: 31.567
    - type: mrr_at_1
      value: 28.358
    - type: mrr_at_10
      value: 36.433
    - type: mrr_at_100
      value: 37.352000000000004
    - type: mrr_at_1000
      value: 37.41
    - type: mrr_at_3
      value: 34.033
    - type: mrr_at_5
      value: 35.246
    - type: ndcg_at_1
      value: 28.358
    - type: ndcg_at_10
      value: 37.973
    - type: ndcg_at_100
      value: 43.411
    - type: ndcg_at_1000
      value: 45.747
    - type: ndcg_at_3
      value: 32.934999999999995
    - type: ndcg_at_5
      value: 35.013
    - type: precision_at_1
      value: 28.358
    - type: precision_at_10
      value: 6.418
    - type: precision_at_100
      value: 1.02
    - type: precision_at_1000
      value: 0.133
    - type: precision_at_3
      value: 14.677000000000001
    - type: precision_at_5
      value: 10.335999999999999
    - type: recall_at_1
      value: 24.633
    - type: recall_at_10
      value: 50.048
    - type: recall_at_100
      value: 73.821
    - type: recall_at_1000
      value: 90.046
    - type: recall_at_3
      value: 36.284
    - type: recall_at_5
      value: 41.370000000000005
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackWebmastersRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 23.133
    - type: map_at_10
      value: 31.491999999999997
    - type: map_at_100
      value: 33.062000000000005
    - type: map_at_1000
      value: 33.256
    - type: map_at_3
      value: 28.886
    - type: map_at_5
      value: 30.262
    - type: mrr_at_1
      value: 28.063
    - type: mrr_at_10
      value: 36.144
    - type: mrr_at_100
      value: 37.14
    - type: mrr_at_1000
      value: 37.191
    - type: mrr_at_3
      value: 33.762
    - type: mrr_at_5
      value: 34.997
    - type: ndcg_at_1
      value: 28.063
    - type: ndcg_at_10
      value: 36.951
    - type: ndcg_at_100
      value: 43.287
    - type: ndcg_at_1000
      value: 45.777
    - type: ndcg_at_3
      value: 32.786
    - type: ndcg_at_5
      value: 34.65
    - type: precision_at_1
      value: 28.063
    - type: precision_at_10
      value: 7.055
    - type: precision_at_100
      value: 1.476
    - type: precision_at_1000
      value: 0.22899999999999998
    - type: precision_at_3
      value: 15.481
    - type: precision_at_5
      value: 11.186
    - type: recall_at_1
      value: 23.133
    - type: recall_at_10
      value: 47.285
    - type: recall_at_100
      value: 76.176
    - type: recall_at_1000
      value: 92.176
    - type: recall_at_3
      value: 35.223
    - type: recall_at_5
      value: 40.142
  - task:
      type: Retrieval
    dataset:
      type: BeIR/cqadupstack
      name: MTEB CQADupstackWordpressRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 19.547
    - type: map_at_10
      value: 26.374
    - type: map_at_100
      value: 27.419
    - type: map_at_1000
      value: 27.539
    - type: map_at_3
      value: 23.882
    - type: map_at_5
      value: 25.163999999999998
    - type: mrr_at_1
      value: 21.442
    - type: mrr_at_10
      value: 28.458
    - type: mrr_at_100
      value: 29.360999999999997
    - type: mrr_at_1000
      value: 29.448999999999998
    - type: mrr_at_3
      value: 25.97
    - type: mrr_at_5
      value: 27.273999999999997
    - type: ndcg_at_1
      value: 21.442
    - type: ndcg_at_10
      value: 30.897000000000002
    - type: ndcg_at_100
      value: 35.99
    - type: ndcg_at_1000
      value: 38.832
    - type: ndcg_at_3
      value: 25.944
    - type: ndcg_at_5
      value: 28.126
    - type: precision_at_1
      value: 21.442
    - type: precision_at_10
      value: 4.9910000000000005
    - type: precision_at_100
      value: 0.8109999999999999
    - type: precision_at_1000
      value: 0.11800000000000001
    - type: precision_at_3
      value: 11.029
    - type: precision_at_5
      value: 7.911
    - type: recall_at_1
      value: 19.547
    - type: recall_at_10
      value: 42.886
    - type: recall_at_100
      value: 66.64999999999999
    - type: recall_at_1000
      value: 87.368
    - type: recall_at_3
      value: 29.143
    - type: recall_at_5
      value: 34.544000000000004
  - task:
      type: Retrieval
    dataset:
      type: climate-fever
      name: MTEB ClimateFEVER
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 15.572
    - type: map_at_10
      value: 25.312
    - type: map_at_100
      value: 27.062
    - type: map_at_1000
      value: 27.253
    - type: map_at_3
      value: 21.601
    - type: map_at_5
      value: 23.473
    - type: mrr_at_1
      value: 34.984
    - type: mrr_at_10
      value: 46.406
    - type: mrr_at_100
      value: 47.179
    - type: mrr_at_1000
      value: 47.21
    - type: mrr_at_3
      value: 43.485
    - type: mrr_at_5
      value: 45.322
    - type: ndcg_at_1
      value: 34.984
    - type: ndcg_at_10
      value: 34.344
    - type: ndcg_at_100
      value: 41.015
    - type: ndcg_at_1000
      value: 44.366
    - type: ndcg_at_3
      value: 29.119
    - type: ndcg_at_5
      value: 30.825999999999997
    - type: precision_at_1
      value: 34.984
    - type: precision_at_10
      value: 10.358
    - type: precision_at_100
      value: 1.762
    - type: precision_at_1000
      value: 0.23900000000000002
    - type: precision_at_3
      value: 21.368000000000002
    - type: precision_at_5
      value: 15.948
    - type: recall_at_1
      value: 15.572
    - type: recall_at_10
      value: 39.367999999999995
    - type: recall_at_100
      value: 62.183
    - type: recall_at_1000
      value: 80.92200000000001
    - type: recall_at_3
      value: 26.131999999999998
    - type: recall_at_5
      value: 31.635999999999996
  - task:
      type: Retrieval
    dataset:
      type: dbpedia-entity
      name: MTEB DBPedia
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 8.848
    - type: map_at_10
      value: 19.25
    - type: map_at_100
      value: 27.193
    - type: map_at_1000
      value: 28.721999999999998
    - type: map_at_3
      value: 13.968
    - type: map_at_5
      value: 16.283
    - type: mrr_at_1
      value: 68.75
    - type: mrr_at_10
      value: 76.25
    - type: mrr_at_100
      value: 76.534
    - type: mrr_at_1000
      value: 76.53999999999999
    - type: mrr_at_3
      value: 74.667
    - type: mrr_at_5
      value: 75.86699999999999
    - type: ndcg_at_1
      value: 56.00000000000001
    - type: ndcg_at_10
      value: 41.426
    - type: ndcg_at_100
      value: 45.660000000000004
    - type: ndcg_at_1000
      value: 53.02
    - type: ndcg_at_3
      value: 46.581
    - type: ndcg_at_5
      value: 43.836999999999996
    - type: precision_at_1
      value: 68.75
    - type: precision_at_10
      value: 32.800000000000004
    - type: precision_at_100
      value: 10.440000000000001
    - type: precision_at_1000
      value: 1.9980000000000002
    - type: precision_at_3
      value: 49.667
    - type: precision_at_5
      value: 42.25
    - type: recall_at_1
      value: 8.848
    - type: recall_at_10
      value: 24.467
    - type: recall_at_100
      value: 51.344
    - type: recall_at_1000
      value: 75.235
    - type: recall_at_3
      value: 15.329
    - type: recall_at_5
      value: 18.892999999999997
  - task:
      type: Classification
    dataset:
      type: mteb/emotion
      name: MTEB EmotionClassification
      config: default
      split: test
      revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
    metrics:
    - type: accuracy
      value: 48.95
    - type: f1
      value: 43.44563593360779
  - task:
      type: Retrieval
    dataset:
      type: fever
      name: MTEB FEVER
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 78.036
    - type: map_at_10
      value: 85.639
    - type: map_at_100
      value: 85.815
    - type: map_at_1000
      value: 85.829
    - type: map_at_3
      value: 84.795
    - type: map_at_5
      value: 85.336
    - type: mrr_at_1
      value: 84.353
    - type: mrr_at_10
      value: 90.582
    - type: mrr_at_100
      value: 90.617
    - type: mrr_at_1000
      value: 90.617
    - type: mrr_at_3
      value: 90.132
    - type: mrr_at_5
      value: 90.447
    - type: ndcg_at_1
      value: 84.353
    - type: ndcg_at_10
      value: 89.003
    - type: ndcg_at_100
      value: 89.60000000000001
    - type: ndcg_at_1000
      value: 89.836
    - type: ndcg_at_3
      value: 87.81400000000001
    - type: ndcg_at_5
      value: 88.478
    - type: precision_at_1
      value: 84.353
    - type: precision_at_10
      value: 10.482
    - type: precision_at_100
      value: 1.099
    - type: precision_at_1000
      value: 0.11399999999999999
    - type: precision_at_3
      value: 33.257999999999996
    - type: precision_at_5
      value: 20.465
    - type: recall_at_1
      value: 78.036
    - type: recall_at_10
      value: 94.517
    - type: recall_at_100
      value: 96.828
    - type: recall_at_1000
      value: 98.261
    - type: recall_at_3
      value: 91.12
    - type: recall_at_5
      value: 92.946
  - task:
      type: Retrieval
    dataset:
      type: fiqa
      name: MTEB FiQA2018
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 20.191
    - type: map_at_10
      value: 32.369
    - type: map_at_100
      value: 34.123999999999995
    - type: map_at_1000
      value: 34.317
    - type: map_at_3
      value: 28.71
    - type: map_at_5
      value: 30.607
    - type: mrr_at_1
      value: 40.894999999999996
    - type: mrr_at_10
      value: 48.842
    - type: mrr_at_100
      value: 49.599
    - type: mrr_at_1000
      value: 49.647000000000006
    - type: mrr_at_3
      value: 46.785
    - type: mrr_at_5
      value: 47.672
    - type: ndcg_at_1
      value: 40.894999999999996
    - type: ndcg_at_10
      value: 39.872
    - type: ndcg_at_100
      value: 46.126
    - type: ndcg_at_1000
      value: 49.476
    - type: ndcg_at_3
      value: 37.153000000000006
    - type: ndcg_at_5
      value: 37.433
    - type: precision_at_1
      value: 40.894999999999996
    - type: precision_at_10
      value: 10.818
    - type: precision_at_100
      value: 1.73
    - type: precision_at_1000
      value: 0.231
    - type: precision_at_3
      value: 25.051000000000002
    - type: precision_at_5
      value: 17.531
    - type: recall_at_1
      value: 20.191
    - type: recall_at_10
      value: 45.768
    - type: recall_at_100
      value: 68.82000000000001
    - type: recall_at_1000
      value: 89.133
    - type: recall_at_3
      value: 33.296
    - type: recall_at_5
      value: 38.022
  - task:
      type: Retrieval
    dataset:
      type: hotpotqa
      name: MTEB HotpotQA
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 39.257
    - type: map_at_10
      value: 61.467000000000006
    - type: map_at_100
      value: 62.364
    - type: map_at_1000
      value: 62.424
    - type: map_at_3
      value: 58.228
    - type: map_at_5
      value: 60.283
    - type: mrr_at_1
      value: 78.515
    - type: mrr_at_10
      value: 84.191
    - type: mrr_at_100
      value: 84.378
    - type: mrr_at_1000
      value: 84.385
    - type: mrr_at_3
      value: 83.284
    - type: mrr_at_5
      value: 83.856
    - type: ndcg_at_1
      value: 78.515
    - type: ndcg_at_10
      value: 69.78999999999999
    - type: ndcg_at_100
      value: 72.886
    - type: ndcg_at_1000
      value: 74.015
    - type: ndcg_at_3
      value: 65.23
    - type: ndcg_at_5
      value: 67.80199999999999
    - type: precision_at_1
      value: 78.515
    - type: precision_at_10
      value: 14.519000000000002
    - type: precision_at_100
      value: 1.694
    - type: precision_at_1000
      value: 0.184
    - type: precision_at_3
      value: 41.702
    - type: precision_at_5
      value: 27.046999999999997
    - type: recall_at_1
      value: 39.257
    - type: recall_at_10
      value: 72.59299999999999
    - type: recall_at_100
      value: 84.679
    - type: recall_at_1000
      value: 92.12
    - type: recall_at_3
      value: 62.552
    - type: recall_at_5
      value: 67.616
  - task:
      type: Classification
    dataset:
      type: mteb/imdb
      name: MTEB ImdbClassification
      config: default
      split: test
      revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
    metrics:
    - type: accuracy
      value: 91.5152
    - type: ap
      value: 87.64584669595709
    - type: f1
      value: 91.50605576428437
  - task:
      type: Retrieval
    dataset:
      type: msmarco
      name: MTEB MSMARCO
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 21.926000000000002
    - type: map_at_10
      value: 34.049
    - type: map_at_100
      value: 35.213
    - type: map_at_1000
      value: 35.265
    - type: map_at_3
      value: 30.309
    - type: map_at_5
      value: 32.407000000000004
    - type: mrr_at_1
      value: 22.55
    - type: mrr_at_10
      value: 34.657
    - type: mrr_at_100
      value: 35.760999999999996
    - type: mrr_at_1000
      value: 35.807
    - type: mrr_at_3
      value: 30.989
    - type: mrr_at_5
      value: 33.039
    - type: ndcg_at_1
      value: 22.55
    - type: ndcg_at_10
      value: 40.842
    - type: ndcg_at_100
      value: 46.436
    - type: ndcg_at_1000
      value: 47.721999999999994
    - type: ndcg_at_3
      value: 33.209
    - type: ndcg_at_5
      value: 36.943
    - type: precision_at_1
      value: 22.55
    - type: precision_at_10
      value: 6.447
    - type: precision_at_100
      value: 0.9249999999999999
    - type: precision_at_1000
      value: 0.104
    - type: precision_at_3
      value: 14.136000000000001
    - type: precision_at_5
      value: 10.381
    - type: recall_at_1
      value: 21.926000000000002
    - type: recall_at_10
      value: 61.724999999999994
    - type: recall_at_100
      value: 87.604
    - type: recall_at_1000
      value: 97.421
    - type: recall_at_3
      value: 40.944
    - type: recall_at_5
      value: 49.915
  - task:
      type: Classification
    dataset:
      type: mteb/mtop_domain
      name: MTEB MTOPDomainClassification (en)
      config: en
      split: test
      revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
    metrics:
    - type: accuracy
      value: 93.54765161878704
    - type: f1
      value: 93.3298945415573
  - task:
      type: Classification
    dataset:
      type: mteb/mtop_intent
      name: MTEB MTOPIntentClassification (en)
      config: en
      split: test
      revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
    metrics:
    - type: accuracy
      value: 75.71591427268582
    - type: f1
      value: 59.32113870474471
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_massive_intent
      name: MTEB MassiveIntentClassification (en)
      config: en
      split: test
      revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
    metrics:
    - type: accuracy
      value: 75.83053127101547
    - type: f1
      value: 73.60757944876475
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_massive_scenario
      name: MTEB MassiveScenarioClassification (en)
      config: en
      split: test
      revision: 7d571f92784cd94a019292a1f45445077d0ef634
    metrics:
    - type: accuracy
      value: 78.72562205783457
    - type: f1
      value: 78.63761662505502
  - task:
      type: Clustering
    dataset:
      type: mteb/medrxiv-clustering-p2p
      name: MTEB MedrxivClusteringP2P
      config: default
      split: test
      revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
    metrics:
    - type: v_measure
      value: 33.37935633767996
  - task:
      type: Clustering
    dataset:
      type: mteb/medrxiv-clustering-s2s
      name: MTEB MedrxivClusteringS2S
      config: default
      split: test
      revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
    metrics:
    - type: v_measure
      value: 31.55270546130387
  - task:
      type: Reranking
    dataset:
      type: mteb/mind_small
      name: MTEB MindSmallReranking
      config: default
      split: test
      revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
    metrics:
    - type: map
      value: 30.462692753143834
    - type: mrr
      value: 31.497569753511563
  - task:
      type: Retrieval
    dataset:
      type: nfcorpus
      name: MTEB NFCorpus
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 5.646
    - type: map_at_10
      value: 12.498
    - type: map_at_100
      value: 15.486
    - type: map_at_1000
      value: 16.805999999999997
    - type: map_at_3
      value: 9.325
    - type: map_at_5
      value: 10.751
    - type: mrr_at_1
      value: 43.034
    - type: mrr_at_10
      value: 52.662
    - type: mrr_at_100
      value: 53.189
    - type: mrr_at_1000
      value: 53.25
    - type: mrr_at_3
      value: 50.929
    - type: mrr_at_5
      value: 51.92
    - type: ndcg_at_1
      value: 41.796
    - type: ndcg_at_10
      value: 33.477000000000004
    - type: ndcg_at_100
      value: 29.996000000000002
    - type: ndcg_at_1000
      value: 38.864
    - type: ndcg_at_3
      value: 38.940000000000005
    - type: ndcg_at_5
      value: 36.689
    - type: precision_at_1
      value: 43.034
    - type: precision_at_10
      value: 24.799
    - type: precision_at_100
      value: 7.432999999999999
    - type: precision_at_1000
      value: 1.9929999999999999
    - type: precision_at_3
      value: 36.842000000000006
    - type: precision_at_5
      value: 32.135999999999996
    - type: recall_at_1
      value: 5.646
    - type: recall_at_10
      value: 15.963
    - type: recall_at_100
      value: 29.492
    - type: recall_at_1000
      value: 61.711000000000006
    - type: recall_at_3
      value: 10.585
    - type: recall_at_5
      value: 12.753999999999998
  - task:
      type: Retrieval
    dataset:
      type: nq
      name: MTEB NQ
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 27.602
    - type: map_at_10
      value: 41.545
    - type: map_at_100
      value: 42.644999999999996
    - type: map_at_1000
      value: 42.685
    - type: map_at_3
      value: 37.261
    - type: map_at_5
      value: 39.706
    - type: mrr_at_1
      value: 31.141000000000002
    - type: mrr_at_10
      value: 44.139
    - type: mrr_at_100
      value: 44.997
    - type: mrr_at_1000
      value: 45.025999999999996
    - type: mrr_at_3
      value: 40.503
    - type: mrr_at_5
      value: 42.64
    - type: ndcg_at_1
      value: 31.141000000000002
    - type: ndcg_at_10
      value: 48.995
    - type: ndcg_at_100
      value: 53.788000000000004
    - type: ndcg_at_1000
      value: 54.730000000000004
    - type: ndcg_at_3
      value: 40.844
    - type: ndcg_at_5
      value: 44.955
    - type: precision_at_1
      value: 31.141000000000002
    - type: precision_at_10
      value: 8.233
    - type: precision_at_100
      value: 1.093
    - type: precision_at_1000
      value: 0.11800000000000001
    - type: precision_at_3
      value: 18.579
    - type: precision_at_5
      value: 13.533999999999999
    - type: recall_at_1
      value: 27.602
    - type: recall_at_10
      value: 69.216
    - type: recall_at_100
      value: 90.252
    - type: recall_at_1000
      value: 97.27
    - type: recall_at_3
      value: 47.987
    - type: recall_at_5
      value: 57.438
  - task:
      type: Retrieval
    dataset:
      type: quora
      name: MTEB QuoraRetrieval
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 70.949
    - type: map_at_10
      value: 84.89999999999999
    - type: map_at_100
      value: 85.531
    - type: map_at_1000
      value: 85.548
    - type: map_at_3
      value: 82.027
    - type: map_at_5
      value: 83.853
    - type: mrr_at_1
      value: 81.69999999999999
    - type: mrr_at_10
      value: 87.813
    - type: mrr_at_100
      value: 87.917
    - type: mrr_at_1000
      value: 87.91799999999999
    - type: mrr_at_3
      value: 86.938
    - type: mrr_at_5
      value: 87.53999999999999
    - type: ndcg_at_1
      value: 81.75
    - type: ndcg_at_10
      value: 88.55499999999999
    - type: ndcg_at_100
      value: 89.765
    - type: ndcg_at_1000
      value: 89.871
    - type: ndcg_at_3
      value: 85.905
    - type: ndcg_at_5
      value: 87.41
    - type: precision_at_1
      value: 81.75
    - type: precision_at_10
      value: 13.403
    - type: precision_at_100
      value: 1.528
    - type: precision_at_1000
      value: 0.157
    - type: precision_at_3
      value: 37.597
    - type: precision_at_5
      value: 24.69
    - type: recall_at_1
      value: 70.949
    - type: recall_at_10
      value: 95.423
    - type: recall_at_100
      value: 99.509
    - type: recall_at_1000
      value: 99.982
    - type: recall_at_3
      value: 87.717
    - type: recall_at_5
      value: 92.032
  - task:
      type: Clustering
    dataset:
      type: mteb/reddit-clustering
      name: MTEB RedditClustering
      config: default
      split: test
      revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
    metrics:
    - type: v_measure
      value: 51.76962893449579
  - task:
      type: Clustering
    dataset:
      type: mteb/reddit-clustering-p2p
      name: MTEB RedditClusteringP2P
      config: default
      split: test
      revision: 282350215ef01743dc01b456c7f5241fa8937f16
    metrics:
    - type: v_measure
      value: 62.32897690686379
  - task:
      type: Retrieval
    dataset:
      type: scidocs
      name: MTEB SCIDOCS
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 4.478
    - type: map_at_10
      value: 11.994
    - type: map_at_100
      value: 13.977
    - type: map_at_1000
      value: 14.295
    - type: map_at_3
      value: 8.408999999999999
    - type: map_at_5
      value: 10.024
    - type: mrr_at_1
      value: 22.1
    - type: mrr_at_10
      value: 33.526
    - type: mrr_at_100
      value: 34.577000000000005
    - type: mrr_at_1000
      value: 34.632000000000005
    - type: mrr_at_3
      value: 30.217
    - type: mrr_at_5
      value: 31.962000000000003
    - type: ndcg_at_1
      value: 22.1
    - type: ndcg_at_10
      value: 20.191
    - type: ndcg_at_100
      value: 27.954
    - type: ndcg_at_1000
      value: 33.491
    - type: ndcg_at_3
      value: 18.787000000000003
    - type: ndcg_at_5
      value: 16.378999999999998
    - type: precision_at_1
      value: 22.1
    - type: precision_at_10
      value: 10.69
    - type: precision_at_100
      value: 2.1919999999999997
    - type: precision_at_1000
      value: 0.35200000000000004
    - type: precision_at_3
      value: 17.732999999999997
    - type: precision_at_5
      value: 14.499999999999998
    - type: recall_at_1
      value: 4.478
    - type: recall_at_10
      value: 21.657
    - type: recall_at_100
      value: 44.54
    - type: recall_at_1000
      value: 71.542
    - type: recall_at_3
      value: 10.778
    - type: recall_at_5
      value: 14.687
  - task:
      type: STS
    dataset:
      type: mteb/sickr-sts
      name: MTEB SICK-R
      config: default
      split: test
      revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
    metrics:
    - type: cos_sim_pearson
      value: 82.82325259156718
    - type: cos_sim_spearman
      value: 79.2463589100662
    - type: euclidean_pearson
      value: 80.48318380496771
    - type: euclidean_spearman
      value: 79.34451935199979
    - type: manhattan_pearson
      value: 80.39041824178759
    - type: manhattan_spearman
      value: 79.23002892700211
  - task:
      type: STS
    dataset:
      type: mteb/sts12-sts
      name: MTEB STS12
      config: default
      split: test
      revision: a0d554a64d88156834ff5ae9920b964011b16384
    metrics:
    - type: cos_sim_pearson
      value: 85.74130231431258
    - type: cos_sim_spearman
      value: 78.36856568042397
    - type: euclidean_pearson
      value: 82.48301631890303
    - type: euclidean_spearman
      value: 78.28376980722732
    - type: manhattan_pearson
      value: 82.43552075450525
    - type: manhattan_spearman
      value: 78.22702443947126
  - task:
      type: STS
    dataset:
      type: mteb/sts13-sts
      name: MTEB STS13
      config: default
      split: test
      revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
    metrics:
    - type: cos_sim_pearson
      value: 79.96138619461459
    - type: cos_sim_spearman
      value: 81.85436343502379
    - type: euclidean_pearson
      value: 81.82895226665367
    - type: euclidean_spearman
      value: 82.22707349602916
    - type: manhattan_pearson
      value: 81.66303369445873
    - type: manhattan_spearman
      value: 82.05030197179455
  - task:
      type: STS
    dataset:
      type: mteb/sts14-sts
      name: MTEB STS14
      config: default
      split: test
      revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
    metrics:
    - type: cos_sim_pearson
      value: 80.05481244198648
    - type: cos_sim_spearman
      value: 80.85052504637808
    - type: euclidean_pearson
      value: 80.86728419744497
    - type: euclidean_spearman
      value: 81.033786401512
    - type: manhattan_pearson
      value: 80.90107531061103
    - type: manhattan_spearman
      value: 81.11374116827795
  - task:
      type: STS
    dataset:
      type: mteb/sts15-sts
      name: MTEB STS15
      config: default
      split: test
      revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
    metrics:
    - type: cos_sim_pearson
      value: 84.615220756399
    - type: cos_sim_spearman
      value: 86.46858500002092
    - type: euclidean_pearson
      value: 86.08307800247586
    - type: euclidean_spearman
      value: 86.72691443870013
    - type: manhattan_pearson
      value: 85.96155594487269
    - type: manhattan_spearman
      value: 86.605909505275
  - task:
      type: STS
    dataset:
      type: mteb/sts16-sts
      name: MTEB STS16
      config: default
      split: test
      revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
    metrics:
    - type: cos_sim_pearson
      value: 82.14363913634436
    - type: cos_sim_spearman
      value: 84.48430226487102
    - type: euclidean_pearson
      value: 83.75303424801902
    - type: euclidean_spearman
      value: 84.56762380734538
    - type: manhattan_pearson
      value: 83.6135447165928
    - type: manhattan_spearman
      value: 84.39898212616731
  - task:
      type: STS
    dataset:
      type: mteb/sts17-crosslingual-sts
      name: MTEB STS17 (en-en)
      config: en-en
      split: test
      revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
    metrics:
    - type: cos_sim_pearson
      value: 85.09909252554525
    - type: cos_sim_spearman
      value: 85.70951402743276
    - type: euclidean_pearson
      value: 87.1991936239908
    - type: euclidean_spearman
      value: 86.07745840612071
    - type: manhattan_pearson
      value: 87.25039137549952
    - type: manhattan_spearman
      value: 85.99938746659761
  - task:
      type: STS
    dataset:
      type: mteb/sts22-crosslingual-sts
      name: MTEB STS22 (en)
      config: en
      split: test
      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
    metrics:
    - type: cos_sim_pearson
      value: 63.529332093413615
    - type: cos_sim_spearman
      value: 65.38177340147439
    - type: euclidean_pearson
      value: 66.35278011412136
    - type: euclidean_spearman
      value: 65.47147267032997
    - type: manhattan_pearson
      value: 66.71804682408693
    - type: manhattan_spearman
      value: 65.67406521423597
  - task:
      type: STS
    dataset:
      type: mteb/stsbenchmark-sts
      name: MTEB STSBenchmark
      config: default
      split: test
      revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
    metrics:
    - type: cos_sim_pearson
      value: 82.45802942885662
    - type: cos_sim_spearman
      value: 84.8853341842566
    - type: euclidean_pearson
      value: 84.60915021096707
    - type: euclidean_spearman
      value: 85.11181242913666
    - type: manhattan_pearson
      value: 84.38600521210364
    - type: manhattan_spearman
      value: 84.89045417981723
  - task:
      type: Reranking
    dataset:
      type: mteb/scidocs-reranking
      name: MTEB SciDocsRR
      config: default
      split: test
      revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
    metrics:
    - type: map
      value: 85.92793380635129
    - type: mrr
      value: 95.85834191226348
  - task:
      type: Retrieval
    dataset:
      type: scifact
      name: MTEB SciFact
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 55.74400000000001
    - type: map_at_10
      value: 65.455
    - type: map_at_100
      value: 66.106
    - type: map_at_1000
      value: 66.129
    - type: map_at_3
      value: 62.719
    - type: map_at_5
      value: 64.441
    - type: mrr_at_1
      value: 58.667
    - type: mrr_at_10
      value: 66.776
    - type: mrr_at_100
      value: 67.363
    - type: mrr_at_1000
      value: 67.384
    - type: mrr_at_3
      value: 64.889
    - type: mrr_at_5
      value: 66.122
    - type: ndcg_at_1
      value: 58.667
    - type: ndcg_at_10
      value: 69.904
    - type: ndcg_at_100
      value: 72.807
    - type: ndcg_at_1000
      value: 73.423
    - type: ndcg_at_3
      value: 65.405
    - type: ndcg_at_5
      value: 67.86999999999999
    - type: precision_at_1
      value: 58.667
    - type: precision_at_10
      value: 9.3
    - type: precision_at_100
      value: 1.08
    - type: precision_at_1000
      value: 0.11299999999999999
    - type: precision_at_3
      value: 25.444
    - type: precision_at_5
      value: 17
    - type: recall_at_1
      value: 55.74400000000001
    - type: recall_at_10
      value: 82.122
    - type: recall_at_100
      value: 95.167
    - type: recall_at_1000
      value: 100
    - type: recall_at_3
      value: 70.14399999999999
    - type: recall_at_5
      value: 76.417
  - task:
      type: PairClassification
    dataset:
      type: mteb/sprintduplicatequestions-pairclassification
      name: MTEB SprintDuplicateQuestions
      config: default
      split: test
      revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
    metrics:
    - type: cos_sim_accuracy
      value: 99.86534653465347
    - type: cos_sim_ap
      value: 96.54142419791388
    - type: cos_sim_f1
      value: 93.07535641547861
    - type: cos_sim_precision
      value: 94.81327800829875
    - type: cos_sim_recall
      value: 91.4
    - type: dot_accuracy
      value: 99.86435643564356
    - type: dot_ap
      value: 96.53682260449868
    - type: dot_f1
      value: 92.98515104966718
    - type: dot_precision
      value: 95.27806925498426
    - type: dot_recall
      value: 90.8
    - type: euclidean_accuracy
      value: 99.86336633663366
    - type: euclidean_ap
      value: 96.5228676185697
    - type: euclidean_f1
      value: 92.9735234215886
    - type: euclidean_precision
      value: 94.70954356846472
    - type: euclidean_recall
      value: 91.3
    - type: manhattan_accuracy
      value: 99.85841584158416
    - type: manhattan_ap
      value: 96.50392760934032
    - type: manhattan_f1
      value: 92.84642321160581
    - type: manhattan_precision
      value: 92.8928928928929
    - type: manhattan_recall
      value: 92.80000000000001
    - type: max_accuracy
      value: 99.86534653465347
    - type: max_ap
      value: 96.54142419791388
    - type: max_f1
      value: 93.07535641547861
  - task:
      type: Clustering
    dataset:
      type: mteb/stackexchange-clustering
      name: MTEB StackExchangeClustering
      config: default
      split: test
      revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
    metrics:
    - type: v_measure
      value: 61.08285408766616
  - task:
      type: Clustering
    dataset:
      type: mteb/stackexchange-clustering-p2p
      name: MTEB StackExchangeClusteringP2P
      config: default
      split: test
      revision: 815ca46b2622cec33ccafc3735d572c266efdb44
    metrics:
    - type: v_measure
      value: 35.640675309010604
  - task:
      type: Reranking
    dataset:
      type: mteb/stackoverflowdupquestions-reranking
      name: MTEB StackOverflowDupQuestions
      config: default
      split: test
      revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
    metrics:
    - type: map
      value: 53.20333913710715
    - type: mrr
      value: 54.088813555725324
  - task:
      type: Summarization
    dataset:
      type: mteb/summeval
      name: MTEB SummEval
      config: default
      split: test
      revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
    metrics:
    - type: cos_sim_pearson
      value: 30.79465221925075
    - type: cos_sim_spearman
      value: 30.530816059163634
    - type: dot_pearson
      value: 31.364837244718043
    - type: dot_spearman
      value: 30.79726823684003
  - task:
      type: Retrieval
    dataset:
      type: trec-covid
      name: MTEB TRECCOVID
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 0.22599999999999998
    - type: map_at_10
      value: 1.735
    - type: map_at_100
      value: 8.978
    - type: map_at_1000
      value: 20.851
    - type: map_at_3
      value: 0.613
    - type: map_at_5
      value: 0.964
    - type: mrr_at_1
      value: 88
    - type: mrr_at_10
      value: 92.867
    - type: mrr_at_100
      value: 92.867
    - type: mrr_at_1000
      value: 92.867
    - type: mrr_at_3
      value: 92.667
    - type: mrr_at_5
      value: 92.667
    - type: ndcg_at_1
      value: 82
    - type: ndcg_at_10
      value: 73.164
    - type: ndcg_at_100
      value: 51.878
    - type: ndcg_at_1000
      value: 44.864
    - type: ndcg_at_3
      value: 79.184
    - type: ndcg_at_5
      value: 76.39
    - type: precision_at_1
      value: 88
    - type: precision_at_10
      value: 76.2
    - type: precision_at_100
      value: 52.459999999999994
    - type: precision_at_1000
      value: 19.692
    - type: precision_at_3
      value: 82.667
    - type: precision_at_5
      value: 80
    - type: recall_at_1
      value: 0.22599999999999998
    - type: recall_at_10
      value: 1.942
    - type: recall_at_100
      value: 12.342
    - type: recall_at_1000
      value: 41.42
    - type: recall_at_3
      value: 0.637
    - type: recall_at_5
      value: 1.034
  - task:
      type: Retrieval
    dataset:
      type: webis-touche2020
      name: MTEB Touche2020
      config: default
      split: test
      revision: None
    metrics:
    - type: map_at_1
      value: 3.567
    - type: map_at_10
      value: 13.116
    - type: map_at_100
      value: 19.39
    - type: map_at_1000
      value: 20.988
    - type: map_at_3
      value: 7.109
    - type: map_at_5
      value: 9.950000000000001
    - type: mrr_at_1
      value: 42.857
    - type: mrr_at_10
      value: 57.404999999999994
    - type: mrr_at_100
      value: 58.021
    - type: mrr_at_1000
      value: 58.021
    - type: mrr_at_3
      value: 54.762
    - type: mrr_at_5
      value: 56.19
    - type: ndcg_at_1
      value: 38.775999999999996
    - type: ndcg_at_10
      value: 30.359
    - type: ndcg_at_100
      value: 41.284
    - type: ndcg_at_1000
      value: 52.30200000000001
    - type: ndcg_at_3
      value: 36.744
    - type: ndcg_at_5
      value: 34.326
    - type: precision_at_1
      value: 42.857
    - type: precision_at_10
      value: 26.122
    - type: precision_at_100
      value: 8.082
    - type: precision_at_1000
      value: 1.559
    - type: precision_at_3
      value: 40.136
    - type: precision_at_5
      value: 35.510000000000005
    - type: recall_at_1
      value: 3.567
    - type: recall_at_10
      value: 19.045
    - type: recall_at_100
      value: 49.979
    - type: recall_at_1000
      value: 84.206
    - type: recall_at_3
      value: 8.52
    - type: recall_at_5
      value: 13.103000000000002
  - task:
      type: Classification
    dataset:
      type: mteb/toxic_conversations_50k
      name: MTEB ToxicConversationsClassification
      config: default
      split: test
      revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
    metrics:
    - type: accuracy
      value: 68.8394
    - type: ap
      value: 13.454399712443099
    - type: f1
      value: 53.04963076364322
  - task:
      type: Classification
    dataset:
      type: mteb/tweet_sentiment_extraction
      name: MTEB TweetSentimentExtractionClassification
      config: default
      split: test
      revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
    metrics:
    - type: accuracy
      value: 60.546123372948514
    - type: f1
      value: 60.86952793277713
  - task:
      type: Clustering
    dataset:
      type: mteb/twentynewsgroups-clustering
      name: MTEB TwentyNewsgroupsClustering
      config: default
      split: test
      revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
    metrics:
    - type: v_measure
      value: 49.10042955060234
  - task:
      type: PairClassification
    dataset:
      type: mteb/twittersemeval2015-pairclassification
      name: MTEB TwitterSemEval2015
      config: default
      split: test
      revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
    metrics:
    - type: cos_sim_accuracy
      value: 85.03308100375514
    - type: cos_sim_ap
      value: 71.08284605869684
    - type: cos_sim_f1
      value: 65.42539436255494
    - type: cos_sim_precision
      value: 64.14807302231237
    - type: cos_sim_recall
      value: 66.75461741424802
    - type: dot_accuracy
      value: 84.68736961316088
    - type: dot_ap
      value: 69.20524036530992
    - type: dot_f1
      value: 63.54893953365829
    - type: dot_precision
      value: 63.45698500394633
    - type: dot_recall
      value: 63.641160949868066
    - type: euclidean_accuracy
      value: 85.07480479227513
    - type: euclidean_ap
      value: 71.14592761009864
    - type: euclidean_f1
      value: 65.43814432989691
    - type: euclidean_precision
      value: 63.95465994962216
    - type: euclidean_recall
      value: 66.99208443271768
    - type: manhattan_accuracy
      value: 85.06288370984085
    - type: manhattan_ap
      value: 71.07289742593868
    - type: manhattan_f1
      value: 65.37585421412301
    - type: manhattan_precision
      value: 62.816147859922175
    - type: manhattan_recall
      value: 68.15303430079156
    - type: max_accuracy
      value: 85.07480479227513
    - type: max_ap
      value: 71.14592761009864
    - type: max_f1
      value: 65.43814432989691
  - task:
      type: PairClassification
    dataset:
      type: mteb/twitterurlcorpus-pairclassification
      name: MTEB TwitterURLCorpus
      config: default
      split: test
      revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
    metrics:
    - type: cos_sim_accuracy
      value: 87.79058485659952
    - type: cos_sim_ap
      value: 83.7183187008759
    - type: cos_sim_f1
      value: 75.86921142180798
    - type: cos_sim_precision
      value: 73.00683371298405
    - type: cos_sim_recall
      value: 78.96519864490298
    - type: dot_accuracy
      value: 87.0085768618776
    - type: dot_ap
      value: 81.87467488474279
    - type: dot_f1
      value: 74.04188363990559
    - type: dot_precision
      value: 72.10507114191901
    - type: dot_recall
      value: 76.08561749307053
    - type: euclidean_accuracy
      value: 87.8332751193387
    - type: euclidean_ap
      value: 83.83585648120315
    - type: euclidean_f1
      value: 76.02582177042369
    - type: euclidean_precision
      value: 73.36388371759989
    - type: euclidean_recall
      value: 78.88820449645827
    - type: manhattan_accuracy
      value: 87.87208444910156
    - type: manhattan_ap
      value: 83.8101950642973
    - type: manhattan_f1
      value: 75.90454195535027
    - type: manhattan_precision
      value: 72.44419564761039
    - type: manhattan_recall
      value: 79.71204188481676
    - type: max_accuracy
      value: 87.87208444910156
    - type: max_ap
      value: 83.83585648120315
    - type: max_f1
      value: 76.02582177042369
license: mit
language:
- en